PrintList Pro
User Manual

Version 5.3 D

e-Node
30 rue de la République e
33150 Cenon -
L UE node.ne

http://www.e-node.net

Q.

PrintList Pro

Contents

About PrintList Pro 7
What is PrintList Pro, and what can | do with it? 7
Technical Details 7

Compatibility Information. 7
Technical SUPPOIt . . . o 7
Installing the plugin 8
Using PrintList Pro in Demo mode 8
LI CBNSING . . o o 9
DefiNItiONS . . . oo 9
Free updates. 9
LiCENSE Y PSS . . . e 10
Registering your PrintList Pro License 11
Quick and easy way — End-user online instant activation 11
Quick and easy way — Developer online instant activation 11
The Demonstration mode dialog 12
Registering Server [ICenses 13
Using atext file 15
Combining Methods 15
Online instant activation 16

Getting started with PrintList Pro 19
Creating your first PrintList Pro Area 19
Working with PrintList Pro Commands. 20

Command ParameEters 20
When to use the PrintList Pro Commands 20
Upgrading from Previous Versions of PrintList Pro 21
Two major differences with previous VErsions. 21
Compatibility NOtes 21
New Configuration Commands 22
New RGB COMMANGASttt e e e e e e e e e e e 22
New Break Processing commands: Computed Breaks 22

Table of Contents

Q.

PrintList Pro

Additions to existing commands e 23

New break features. 23
Printing an AreaList Pro area 23
Configuring PrintList Pro 24
Using Defined Constants with PrintList Pro 24
Specifying the Arrays 1o Print. 24
Printing RECOIAS 25
Headers . . . 25
SOMING A AY S . . oo 25
Formatting 25
YIS . . 26
CONS aNTSo 26
Column and Header Styles 26
ROW-SpeCific Styles 26
Cell-Specific Styles 26

Styled teXt. . . o oo 26

(7o) o= 28
DefiNing COlOrS 28
Column and Header Colors. 28
Cell-SpecCific Colors. 29
Multiple Lines in @ach ROW 29
Variable Height ROWS. 29
Column Widths. 30
Dividing Lines, Frame and Header Separator Lines. 30
Hairline Line Width 30
Double INes 30

USING PiCtUIE AITay s . . .t e e 30
End of Page Callback Method 31
Performance Issues with Formatting Commands. 31
Borders and Frames 31
Header/Cell Icon SUPPOIto o 31
Picture Objects in Cells. e 31
Picture Objects in Headers e 31
Configuration Commands 32
P REgISter . . o o 32

Yo PIiNtLIStPrO . . . 34
PL_AddCOIUMN . . . 35
PL_SetArraysNam 35
PL_SetHeaders. 36

Table of Contents

Q.

PrintList Pro

PL_SetFormat. 37

PL_SetWidths 41
PL_SetHdrStyle. . . . 41

Pl SetHArODES . . . o 42

PL _SetMiscOPlioNs. 43

P S etStyle . . oo 43

PL_SetForeClr . .. 44
PL_SetForeRGB COIOr. 45

Pl SetBackClr . . . 46
PL_SetBackRGB COIOr 47
PL_SetColBackColor 48
PL_SetColBackRGB COIOr. e 49
PL_SetROWSTylE 50
PL_SetROWCOIOr. . . . o 51
PL_SetROWRGBCOIOT. e 52

Pl SelDiVIiders 53
PL_SetRGBDIVIAErs 54

Pl SetFrame 55
PL_SetRGBFrame 56

Pl SetHeight 57

Pl SetSort 58

P SetColOPtS . . o 58
PL_SetCellStyle 59
PL_SetCellCOlor 61
PL_SetCellRGBCOIOr 62
PL_SetCelllcon . . . o 63

PL _SetCellBorder. e 65
PL_SetCellFrame 66
PL_SetPageProc. 67

PL_GetVersion 67

Pl Load . .. 68

Pl SaVE . . o 68

Using the Callback Methods 69
SUMMAIY . . . 69
VarNiNgS . . oo 69
End of Page Callback 69
Custom Calculations in @ Break. 70
Custom Calculations in a Break Header 70
Calculated Column Callback 71
Computed Breaks 72

Table of Contents

Q.

PrintList Pro

Field and Record Commands 713
Using the Field Printing Capability 73
TEMPOrArY AITAYS . . o oot et e e e e e e e e e e 73
Arrays and Fields 73
Printing 4D Fields. 73
Fields from Related One Tables 73
SOMtING . . 73

TIMeE Datao 73
Maximum Number of Records Printed 74
Performance Issues When Printing Fields e 74
COMMANGS. . . o 74
Pl SetFile . . 74

Pl SetFields. . . .o 75

Calculated Columns 76
Setting a Calculated Column (field MOde) 76
Setting a Calculated Column (array MOde) 77
Setting the Callback Method 77

Field mode example 78

Array Mmode eXample. 78
COMMANGS. . . o 79
PL_SetCalcCall. 79

Break Level Processing 80
About PrintList Pro Break Level Processing. e 80
When Do Breaks OCCUI? oo 80
Using PrintList Pro Break Level Processing. e e 82
Setting @ Break Level.o 82
Text Overflow and Justification in Breaks. 83
Built-in Calculations 83
Custom CalCulations 83
Suppressing Repeated Values. 83
Style and Color in Breaks. 83
Multiple Lines in @ Break 84
Lines Displayed in @ Break. 84
Hide the Detail Area. 85
Page Breaks 85
Variable Height BreaKs. 85
Using Break Headers. 85
Using Computed BreaKs 86
COMMANGS. . . oo 87

Table of Contents

Q.

PrintList Pro

PL_SetPageBreak. 87

P SetBrhOPIS . . . e 88

PL_ SetBrkOrder 88

PL_SetRepeatVal 89

Pl SetBrhTeXt . .. 89

Pl SetBKHTEXt. . . o 91

PL_SetBrkFUNC. 92

PL_SetBKHFUNG 92

PL_SetBrkStyle. 93

PL_SetBKkHStyle 93

Pl SetBrkCoOlOr . . . 94

PL_SetBrkRGB COIOr. 95

PL_SetBKHCOIOr. 95

PL_SetBKHRGB COIOr 96

PL_SetBrkHeight. 97

PL_SetBkHHeight e 97

PL_SetBrkROWDIV. 98
PL_SetBrkROWRGBDIV.o 98

PL_SetBrkColOpto 99
PL_SetBrkCoIRGBOPto 100

PL_SetBKHCOIOPD 100
PL_SetBKHCOIRGBOPDL. ot e 101

Pl PrOCESSAITAYS . . . o 102

PL_GetBreakValue e 103

Examples 104
Example 1 — One record current selection e 104
Example 2 — Multiple record current selection 107
Example 3 —Adding atotal line to the list. 109
Example 4 — Break Level ProCessingt 112
Example 5 — Computed Breaks 115
PrintList Pro Constants 119
Text Style Tags 121
Copyrights and Trademarks 123
Index 124

Table of Contents

Q.

About PrintList Pro

About PrintList Pro

What is PrintList Pro, and what can I do with it?

PrintList Pro is an easy-to-use tool for printing arrays and records on 4D layouts. It lets you print arrays or fields.

PrintList Pro is the perfect complement to ArealList Pro, providing a full-featured plug-in, which can be used to print columns of
data. You can use PrintList Pro for any standard columnar output (arrays or fields) and it be configured to easily print a PrintList Pro
object, retaining all formatting features.

Because PrintList Pro is a plug-in, it is very fast, and provides capabilities not available to you using native 4D arrays or report
printing tools, such as automatic column sizing, custom formatting, robust break level processing, calculated columns and more.

Data is passed to PrintList Pro using 4D arrays, or field references. If only two columns need to be printed, create two arrays or
specify two fields and pass them as parameters to PrintList Pro. No string parsing or other contortions are needed.

PrintList Pro can be used with just one command — no special formatting is required. For those cases when more control is needed,
several optional commands give you complete control over the appearance of the area.

Special tools are implemented if you wish to customize the appearance and configuration of PrintList Pro, allowing the customization
to be implemented rapidly.

PrintList Pro’s break level processing includes the ability to apply a variety of built-in calculations as well as the ability to perform
custom calculations. Complete control over style, color, and formatting of all break level information is given.

PrintList Pro provides the ability to print up to 32767 columns (subject to memory limitations).

Technical Details

Compatibility Information

PrintList Pro version 5 is compatible with 4D v11, v12, v13, v14 and v15, for both MacOS and Windows (including 32-bit and 64-bit
servers).It requires MacOS 10.7.5 or higher and Windows 7 or better.

Technical Support

Technical support for PrintList Pro is provided via the online web forums.

Items that are new or modified in PrintList Pro version 5 are displayed in pink (magenta) characters.

What is PrintList Pro, and what can | do with it? - Technical Details

http://www.e-node.net/alp
http://forums.e-node.net

Installation

8

Installation

Installing the plugin

PrintList Pro is provided as a bundle for both Windows and MacOS: there is just one version for both platforms. To install it, simply
copy the file PLP.bundle into your Plugins folder.

Plugins folders can be located in one of two locations:

m In the 4D application folder (4D or 4D Server). When plugins are installed in this location, they will be available to every database
that is opened with that application.

m Next to the database structure file for your project: in this case, the plugin will only be available to that database. On MacOS, this
means that the Plugins folder must be placed within the database package or folder. To open a package, ctrl-click on the package
and choose Show Package Contents from the contextual menu.

Using PrintList Pro in Demo mode

You can use PrintList Pro in Demo mode for 20 minutes, after which time it will cease to work. When this becomes annoying, it’s
time to buy a license, which you can do on our website.

Licenses are either linked to the 4D product number, the workstation or the company name as described below.

Installing the plugin - Using PrintList Pro in Demo mode

http://www.e-node.net/

Installation

9

Licensing

Like all e-Node plug-ins, PrintList Pro offers several license types. There are no such things as MacOS vs Windows or Development
vs Deployment.

For current pricing, please see the ordering page on our website.

Definitions

m Regular licenses are used for applications that are opened with 4D Standalone or 4D SQL Desktop, or with 4D Server, either in
interpreted or compiled mode (doesn’t make a difference regarding plugin licensing).

These can be either single user or server databases and they are linked to the 4D or 4D Server license: you need to provide
the number returned by the “Copy” or “eMail” buttons from the plugin demonstration mode alert (this number is actually the 4D
command GET SERIAL INFORMATION first parameter). This number is a negative long integer such as -1234567.

m Merged licenses are used for double-clickable applications built with 4D Volume Desktop (single user) or with 4D Server by
means of the 4D Compiler module.

These licenses are linked to the machine ID (single user workstation or server): you need to provide the number returned by
the “Copy” or “eMail” buttons from the plugin demonstration mode alert (this number is calculated from the single user or server
machine UUID). On 4D Server any remote client will return the server number. This number is a positive long integer such as
1234567.

In both cases the demonstration mode dialog will display the proper number according to the current setup (regular or merged) and
the “Copy” and “eMail” buttons will use it as well.

License keys

m Final licenses keys are delivered by e-Node once you have provided the associated number as described above (4D serial
information or machine ID). They activate the plugin either though 4D code or the Register button from the demonstration mode
dialog.

m Master keys are delivered upon order if you opt for the Online instant activation system. The final license key is self-generated
by the plugin and stored into the license file, so you don’t have to bother with 4D serial information or machine IDs.

Free updates

m Regular licenses. A new license will be supplied for free at any time (maximum once a year) if you change your 4D version or get
a new 4D registration key for the same version, provided that your previous license match the current public version at exchange
time. This rule applies whether you are already using the new version or not: just specify that you also want a key for the older
version as well as the current one when you order an upgrade.

m Merged licenses. These licenses are independent from the 4D versions and product numbers. They will remain functional if you
upgrade e.g. from 4D v14 to 4D v15 on the same machine (single user workstation or server).

You'll only need to update a merged license if your machine or motherboard is replaced (a new license will be supplied for free
in this case, provided that your previous license match the current public version at the exchange time), or if you install a paid
upgrade of the plugin.

Note: if you are using several concurrent versions of 4D you will need one plugin license for each version.

Licensing

http://www.e-node.net/plp
http://www.e-node.net/

Installation

License types

m Single-user. This license allows development (interpreted mode) or deployment (interpreted or compiled mode, including
merged) of applications that are opened with 4D Standalone or 4D SQL Desktop or built with 4D Volume Desktop.

m Server. These licenses allow development (interpreted mode) or deployment (interpreted or compiled mode, including merged
servers/remotes) on 4D Server with up to 10 users (“small server”), 11 to 20 users (“medium server”) or more (“large server”).

m Unlimited Single User. This license allows development (interpreted mode) or deployment (interpreted or compiled mode,
including merged) on any number of 4D Standalone (or single user merged applications built with 4D Volume Desktop) that run
your 4D application(s).

It is a yearly license, which expires after the date when it is to be renewed. Expiration only affects interpreted mode. Compiled
applications using an obsolete license will never expire.

A single license key will unlock all setups on all compatible 4D versions and all versions of the plugin. The license key is linked
to the developer/company name.

This license allows deployment (selling new application licenses, updates or subscriptions) while the license is valid. No new
deployment may occur after expiry without a specific license (merged or regular). End-users running deployments sold
during the license validity period remain authorized without time limit, provided that they are no longer charged for the application
using the plug-in (including maintenance or upgrades).

m OEM. This license allows development (interpreted mode) or deployment (interpreted or compiled mode, including merged)
on any number of 4D Servers (any number of users), 4D Standalone or single user/remote merged instances that run your 4D
application(s).

Itis a yearly license, under the exact same terms as the Unlimited Single User license described above, except that it also covers
server deployments.

m Unlimited OEM. This license is a global OEM license, covering any combination of the plug-ins published by e-Node, including
Arealist Pro, SuperReport Pro, PrintList Pro, CalendarSet and Internet ToolKit in all configurations.

m Partner license. This license matches 4D’s annual Partner subscription and covers all the plug-ins published by e-Node,
including ArealList Pro, SuperReport Pro, PrintList Pro, CalendarSet and Internet ToolKit.

For each product, a single registration key allows development (interpreted mode) or deployment (interpreted or compiled mode,
except merged) on all 4D Standalones and 4D Servers (2 users) regardless of 4D product numbers, OS and versions. No merged
applications.

This is a yearly license, expiring on February 15t (same date as 4D Partner licenses). Expiration only affects interpreted mode.
Compiled applications using an obsolete license will never expire.

Note: you don’t have to be a 4D Partner subscriber to subscribe to the e-Node Partner license.

Licensing

10

http://www.e-node.net
http://www.e-node.net/alp
http://www.e-node.net/srp
http://www.e-node.net/plp
http://www.e-node.net/cs
http://www.e-node.net/itk
http://www.e-node.net/
http://www.e-node.net/alp
http://www.e-node.net/srp
http://www.e-node.net/plp
http://www.e-node.net/cs
http://www.e-node.net/itk

Installation

Registering your PrintList Pro License

Once you have purchased your license, you will receive a registration key. This code must be registered each time the database
is started.

There are three ways to register your license:
m using the Demo mode dialog “Register” button,
m though a text file,

m in your 4D code with a command.

Both Register button and 4D code registrations can be performed in one single step through the Online instant activation system.

Yearly licenses such as Unlimited single user, OEM and Partner licenses do not require any serial information or online instant
activation. The only way to register these licenses is through the PL_Register command.

Quick and easy way — End-user online instant activation

1. Make sure that the machine where the plugin will be used is connected to the Internet (single user workstation or in server
mode the first remote client that will connect to the server).

2. Launch your application. Displaying any layout that uses the plugin will trigger the demonstration mode dialog.

3. Enter the Master key that was delivered by e-Node.

4. The plugin will display an alert indicating that it is now registered.

Note: this method does not require your source code to be modified or recompiled.

Quick and easy way — Developer online instant activation

1. Put the following lines of code into your On Startup database method, with the Master key that you received and your email
address:

C_LONGINT (S$result)

$result:=PL_Register ("yourMasterKey";0;"youremail@something.xxx") //0 if successful

2. Make sure that the machine where the plugin will be used is connected to the Internet (single user workstation or in server
mode the first remote client that will connect to the server).

3. Install your application.
4. Launch your application. Displaying any layout that uses the plugin will silently (no dialog) register it.
5. You will receive an email with the final key that was issued and the IP address of the user site.

If the site has no Internet connection or if you want to use the plugin license system to help protect your own software copy, you can
manage the final key registration yourself using one of the following methods.

Registering your PrintList Pro License

11

http://www.e-node.net/

Installation

The Demonstration mode dialog

The demonstration mode dialog is used for both Online instant activation and manual registration, unless the plugin is registrered
with a final key or master key through the 4D code.

When using manual registration, single user and server licenses require that you first send us the relevant information (serial or
machine ID, see Definitions).

Note: sending the serial information or machine ID is not needed with the Online instant activation system.

This action is performed from the Demo mode dialog, which is displayed upon the first call to the plugin.

To trigger this display and enable your users to register without actually calling a command or setting up an area, you can also pass
an empty string to PL_Register and the dialog will show:

C_LONGINT ($result)
$result:=PL_Register ("") //display the dialog

Note: calling PL_Register with any key (valid or invalid) will not display the dialog.

Retrieving the serial/machine information

The Demo mode dialog includes all relevant information (serial or machine ID, see Definitions) to obtain your license, as well
as a “Copy” button to put this information into your clipboard or a text file, an “eMail” button to email the information to e-Node’s
registration system and a “Register” button to enter your license key once received:

PrintList Pro 5.3

Welcome to the demonstration version of PrintList Pro. The
plugin will be fully functional for 20 minutes.

www.e-node.net/PLP

Your 4D serial number is -1587244334.

Copy eMail Register oK

Using the “Register” hutton

Clicking on this button will display a standard 4D request to enter your registration key:

Request
Please enter your registration license key:

w4
A) | |

Registering your PrintList Pro License

12

Installation

13

Paste or drag and drop your registration key and, if correct, the plug-in will be registered for all future uses on this workstation:
Alert

PrintList Pro 5 is now registered.

Ok

Note: if 4D does not activate the Edit > Paste menu item click Abort and Register again, or try drag and drop.

Note: you can directly paste the Master key that was delivered when using the Online instant activation.

Registering Server licenses

Similarly, server licenses can be registered from the demonstration mode dialog without having to modify your code and use
PL_Register (which of course you can do with any license type). In this case, the 4D Licenses folder, serial information or machine
ID used will only be the 4D Server information, not the client workstation’s.

Server licenses can be registered on any client workstation (remote mode), or on 4D Server itself.

Registering in Remote mode

The server and all workstations can be registered from any single client workstation connected to the server. As in Single user mode,
the Demo mode dialog will be displayed on a client workstation when one of the following conditions are met:

m Calling a PrintList Pro command other than PL_Register with a non-empty parameter

m Calling PL_Register with an empty string

Use the Copy, eMail and Register buttons just as above and your server will be registered for all workstations.

Note: any other workstations previously connected (before registration occurred) will need to re-connect to the server to be functional.

Registering on 4D Server
To directly register the server and all workstations from the server machine itself, you need to display the Demo mode dialog on the server.

Call PL_Register with an empty string in the On Server Startup base method:
C_LONGINT ($result)
$result:=PL_Register ("") //display the dialog

Use the Copy, eMail and Register buttons just as above and your server will be registered for all workstations.

Note: the dialog will automatically be dismissed on the server after one minute in order not to block client connections (the
server is only available to client workstations once the On Server Startup method has completed).

Registering your PrintList Pro License

Installation

Merged licenses notes

Both methods can be either used with regular or merged servers and client workstations.
m Regular licenses are linked to the 4D Server serial information

m Merged licenses are linked to the 4D Server machine ID

Note: merged licenses will keep working if your 4D Server serial information is modified (upgrading or 4D Partner yearly
updates), or if any client workstation hardware is changed.

It will only need to be updated if the 4D Server hardware is changed, or if the plugin itself requires a new key (paid upgrades
upon major version changes).

You may want to register your merged server without having to turn off the database to modify the code. We have created a utility

database to manage this - it’s called Get Serial Info and you can download the appropriate version for your 4D version from the

e-Node server.

This is possible using any 4D setup on the server machine (such as a standard developer single user 4D). Keeping your production
server alive, open the Get Serial Info database with 4D on the same server machine. Ignore the demonstration mode dialog (if your
single user 4D is not registered for the plugin) and wait for the next Alert:

Alert

The following information has been copied to your
clipboard:

Key: -204998519

User:

Company: e-Node

Max users: 1

4D Local Mode FO011320 build 122395 type 0

UUID: 93A47C40-30A2-5FF4-ACEBD-DDAB72C6A380
Machine ID: 114681

[ok |

Atext file is also saved with the same information.
The last line “Machine ID” is the number that you need to send in order to receive your merged server registration key.

You can also check the machine ID in standalone mode (or on any remote client with the built-client application or in interpreted
mode as long as it is running on the same server machine) with AreaList Pro using the following call:

C_LONGINT($machinelD)
$machinelD:= AL_GetAreaLongProperty (0;"mach")

Note: you don’t need an ArealList Pro license to do this.

Registering your PrintList Pro License

14

http://www.e-node.net
http://www.e-node.net
http://e-node.net/ftp/GetSerialInfo
http://www.e-node.net/alp

Installation

Using a text file

Alternately, you can place a plain text file into your 4D Licenses folder.

To open this folder from 4D use the 4D Menu Help > Update licenses, then click the Licenses Folder button:

Licenses Folder Done

The text file must be called “PLP5.license4Dplugin” and be a plain text type file.

Just paste all your licenses for PrintList Pro v5.x, one per line, e.g.:
MyLicense1
MyLicense2
MyLicense3

Any license type can be included into this document, except unlimited single user, OEM and Partner licenses.

Note: the Demo mode dialog Register button actually does this: create the text file and include the license key, or add the
license key to the existing document if any.

Note: when using the Online instant activation system, the Master key is automatically converted to a Final key according to the
current environment and this final key is stored into the license file.

Using PL_Register
1. Open the On Startup database method
2. Call the PL_Register function with your registration key - for example:

$result:=PL_Register ("YourRegistrationKey") //result = 0 means registration was successful

If you have several licenses for different 4D setups you can call PL_Register multiple times in a row without further testing. See
the Example with multiple calls.

Combining methods

When such a file exists in the Licenses folder PrintList Pro will check for valid licenses from this document as a first action before
anything else (including checking any PL_Register command).

If a valid license is included into the “PLP5.license4Dplugin” document any calls to PL_Register will return zero (for “OK”). Therefore
you can mix modes and use the text file (or Register button) as well as the command.

Unlimited single user, OEM, temporary and Partner licenses can only be entered through the PL_Register command.

Registering your PrintList Pro License

15

Installation

Online instant activation

As of version 5.3, PrintList Pro provides an automated solution to register itself using an Internet connection.

This feature can be helpful whenever you don’t want to bother your end user with plugin registration, or want to save the time to
collect the serial/machine ID, or any other reason when you expect the process to be entirely and automatically managed from the
client site.

It can also be used for your own development tools, removing the need to modify your 4D code to include or update registration
licenses.

Note: the site must have an open outgoing HTTP Internet connection available.

“Master” keys

The basic principle is that we deliver a non-assigned license key, called “master key”, which you use in your call to PL_Register in
your On Startup database method. This key will be used to generate valid keys for the plugin and environment, called “final keys”.

One single master key can generate as many final keys as you need, in case you order several licenses of the same kind (regular
or merged, single user licenses or server licenses of the same size).

A master key looks like a final key, except that the second part is the plugin code name (same as the license file name) instead of
the serial/machine ID, e.g. “123456-PLP5-xyz".

Passing a master key as the first parameter to PL_Register when the plugin has not been previously registered by any of the
methods above will result in a connection attempt to e-Node’s license server as described below.

Master keys can also be entered by the user through the registration dialog. See Quick and easy way — End-user online instant
activation.

Process

If the plugin has not been previously registered (through Online instant activation, text file, register button or PL_Register with a final
key), and if PL_Register receives a master key in its first parameter, it will recognize it a such, then:

1. Connect to e-Node’s license server.

2. Ask the server if the master key has not been assigned yet (or if the master key is designed to generate several final keys, if
there is any unassigned key up to that number).

3. Send the serial information (regular licenses) or the machine ID (merged licenses) to the license server.
4. If an error is detected (such as master key not matching the current setup) return an error to PL_Register.

5. If the master key is valid, receive its final key from the license server then register itself (writing into the license file).

Note: if a final key has already been issued for this serial/machine ID using this master key, it is simply resent.

Registering your PrintList Pro License

16

Installation

17

User interface

In addition, PL_Register second parameter allows optional settings regarding the user interface in the Online instant activation
process.
C_LONGINT ($result)

$result:=PL_Register ("Master key";0 ?+1 ?+2 ?+3;"youremail@something.com") //all dialogs

Display a confirmation dialog hefore step 1
Warning

Is it OK to connect to e-Node's license server to register
PrintList Pro?

Cancel (U

Display an alert at step 4
Alert

An error 11 occurred while trying to register PrintList Pro with
e-Node's license server.

-

f
=

[ok
Display an alert at step 5
Alert
PrintList Pro is now successfully registered.
SRR

Registering your PrintList Pro License

Installation

18

eMail notification

The third parameter to PL_Register (optional) is the developer email to whom the information will be sent (if this parameter is used
and non empty, of course).

The emailed information includes both the final key issued and the IP address from where it was requested (and to where it was
sent for registration).

m When a key is issued:
Title: PLPS5 license
Body:
License 123456-123456789-abcdefgh
issued to 12.34.56.78
m When a key is resent:
Title: PLPS5 license
Body:
License 123456-123456789-abcdefgh
resent to 12.34.56.78

The default mode (master key being passed as the only parameter) is silent: no confirmation, no alert, no email.

Registering your PrintList Pro License

Getting Started with PrintList Pro

Getting started with
PrintList Pro

Creating your first PrintList Pro Area

It's easy to create your first PrintList Pro list area.
1. Create a new form, or open an existing one that you want to add a list to.

2. Choose Plugin Area from the Plugin/Subform/Web Area button in the object bar:

=s)| **| Plug-in Area

ke SBubform

—-_—

W/ Web Area

3. Your cursor will turn into a crosshair. Draw a box on the form in the size that you want your list to be. This will create a rectangular
box named Plugin Area.

4. In the Property List window, choose PrntListPro from the Type popup menu. (If the “PrntListPro” option is not available, please
refer to the installation instructions).

5. Enter a name for your new area in the Variable Name field in the Property List window.

6. Your area will now show the PrintList Pro version and copyright information.

The variable name will be used as a parameter for the PrintList Pro commands.

Be careful to never have two PrintList Pro objects with the same variable name on a 4D form.

Creating your first PrintList Pro Area

|19

Q .

Getting Started with PrintList Pro

Working with PrintList Pro Commands

Each command you write must adhere to a specific syntax in order for it to be correctly understood by PrintList Pro. Some commands
return a result: these are functions. You can use the commands and functions to configure every operation performed by PrintList
Pro, and to get various informations.

Each PrintList Pro command has a syntax, or rules, that describe how to use the command in your 4D database. For each
command, the name of the command is followed by the command’s parameters, and result in case of functions.

A PrintList Pro command syntax looks like this:

PL_SetHdrStyle

(areaRef:L; columnNumber:L; fontName:T, size:L; styleNum:L)

The parameters are enclosed in parenthesis, and separated by semicolons.

Command parameters

Each parameter is followed by a colon and a letter indicating the type of data required for that parameter:

iL - longint

:0 - blob

P - picture

‘R - real

iT - text

Y - array

:Z - pointer

Each is preceded by one of three arrow signs, which indicate whether it is a value that you pass to the command or one that the
command returns to you, or a value that is passed, then modified and returned by the command in the same parameter:
= parameter A value that you pass to the command

~ parameter A value that is returned by the command

Note: when calling a plugin command, all omitted parameters are initialized to the NULL of the respective types (0, 0.0, ", 100:00:00!, ...).

When to use the PrintList Pro Commands

The PrintList Pro commands must only be executed in the On Printing Detail phase of a form method or object method during the
execution of the PRINT SELECTION or PRINT RECORD command.

The PRINT SELECTION command will execute a On Printing Detail phase for each record in the current selection (and requires at
least one record in the current selection to be executed at all). PrintList Pro will print the array(s) in any PrintList Pro object once for
every record in the current selection.

If you wish to use PRINT SELECTION to print an array only once, ensure that there is only one record in the current selection of the
table used for printing (the one that holds the layout, which doesn't have to be related to the data that is actually printed).

If you wish to use PRINT RECORD, ensure that there a current record in the table used for printing (the one that holds the layout,
which doesn't have to be related to the data that is actually printed).

Working with PrintList Pro Commands

Q.

Getting Started with PrintList Pro

Upgrading from Previous Versions of PrintList Pro

To upgrade to PrintList Pro version 5, simply install it as described in the Installation section of this manual, replacing your older version.

Two major differences with previous versions

As opposed to v4.x (and earlier releases):
m PL_Register returns 0 if registration was successful
m The 4D project method Compiler_PLP is no longer needed

Compatibility Notes

New features
m PrintList Pro version 5 supports Unicode for printing.
m Styled text is supported.

m PrintList Pro version 4.x commands are still here: your previous code should work fine, give or take the few changes and minor
deprecated features below.

m The PL_Register command returns O for OK and an integer between 1 and 12 if not OK.

m The 4D project method Compiler_PLP is no longer needed.

In addition, PrintList Pro uses native drawing. Not all fonts contain italic (or bold) variations and those technologies do not synthesize
styles. For example Geneva on most Macs has only the Regular typeface, Arial has Regular, Bold, Italic and Bold lItalic typefaces.

Note: if bold or italic styles are set, but not installed for the font, PrintList Pro will print regular (plain) characters.

Removed features
m Picture escapes in text.
m Outline and shadow styles.

m Escape characters ("*1234" in cell data or headers) , including the first parameter to PL_SetMiscOptions)

m Patterns. They are interpreted by PrintList Pro version 5 as transparency ratios:

“pblack”: 100 %

“darkgray”: 75 %

“gray”: 50 %

“lightgray”: 25%

“white” or “none” or *” or anything else: 0% = no drawing

m PL_SetCelllcon now only supports pictures from the Picture Library. ‘cicn’ and ‘PICT’ resources are no longer supported.

Upgrading from Previous Versions of PrintList Pro

Q .

Getting Started with PrintList Pro

Removed commands

m PL_GetAdvProps (did nothing in PrintList Pro 4.7, anyway)
m PL_SetArrays (must use PL_SetArraysNam)

m PL_SetHeaderlcon (use PL_SetCelllcon with cellRow = 0)
m PL_SetSubSelect

m PL_SaveData (was documented as obsolete — use the new PL_Save in XML)

m PL_RestoreData (was documented as obsolete — use the new PL_Load in XML)

New Configuration commands

PL_AddColumn (areaRef:L; dataPointer:Z; insertAt;L) = result:L

m add column at position insertAt; zero means append to the end

m when in Records mode, dataPointer should be a pointer to a field

m when in Arrays mode, dataPointer should be a pointer to an array (must not be a local array!)

Note: this command supports the component architecture (using arrays from the host database in a component and vice versa).

PL_Load (areaRef:L; XML:T) = result:L

m initialize an area from XML

PL_Save (areaRef.L; XML:T) = result:L

m save the area settings into XML

New RGB commands

PL_SetBrkColRGBOpt (areaRef:L; breakLevel:L; columnNum:L; showColDivider:L; lineWidth:F; dividerRed:L; dividerGreen:L;
dividerBlue:L)

PL_SetBkHCoIRGBOpt (areaRef:L; breakLevel:L; columnNum:L; showColDivider:L; lineWidth:F; dividerRed:L; dividerGreen:L;
dividerBlue:L)

PL_SetBrkRowRGBDiv (areaRef:L; lineWidth:F; dividerRed:L; dividerGreen:L; dividerBlue:L)

New Break Processing commands: Computed Breaks

PL_ProcessArrays (callbackMethodName:T; breakArrays:Y; dataArrays:Y; useDetail:L) @ error:L

PL_GetBreakValue (handle:L; column:L; calculation:L) @ value:F

See Using Computed Breaks for details about these powerful new commands, which can be used as array utilities without need to
print anything or set up a plug-in area.

Upgrading from Previous Versions of PrintList Pro

Q.

Getting Started with PrintList Pro

Additions to existing commands

m PL_SetColOpts has a new longint parameter at the end (ignored on Mac): 0 = use GDI plus for drawing (default), anything else:
use GDI for drawing

PL_SetColOpts (areaRef:L; hideLastColumns:L; hideDetailArea:L; drawingEngine:L)

m PL_SetFormat has three new parameters at the end:
longint: 0 = plain text (default), anything else = attributed (multi-style) text

Note: the multi-style property is applied to all formatting in that column... breaks have to account for that!

real: line spacing to use, 0 is substituted by 1 (default)
longint: vertical alignment O - default, 1 - top, 2 - center, 3 - bottom
PL_SetFormat (areaRef:L; columnNumber:L; format:T; columnJust:L; headerJust:L;
usePictureHeight:L; attributed:L; lineSpacing:F)
m Double lines (typical in accounting) are now supported in breaks: just use 2.0 as the lineWidth (5" parameter to PL
SetBrkColOpt/PL_SetBrkColRGBOpt/PL_SetBkHColOpt/PL_SetBKHColRGBOpt).
Two 0.25 point lines will be printed.

New hreak features

In break calculations, "\Var" will compute variance and "\Dev" will compute standard deviation.

Printing an Arealist Pro area

To print AreaList Pro areas, just call AL_Save and PL_Load: they use the same XML UTF-8 format.
Then set row/cell options and you are done. Or add break processing options.

Using this feature will allow you to indirectly apply AreaList Pro v9 numerous formatting options (using the v9 property-based API)
to a PrintList Pro area using an Areal.ist Pro area as the source.

Note that this feature is only available for persistent ArealList Pro properties. Refer to ArealList Pro manual for property persistency.

Upgrading from Previous Versions of PrintList Pro

http://www.e-node.net/alp

Q.

Configuring PrintList Pro

Configuring PrintList Pro

A PrintList Pro object is initialized in the On Printing Detail phase as the record is about to be printed.

This initialization will be contained in the PrintList Pro plug-in area object method or in the form method.

Using Defined Constants with PrintList Pro

There are defined constants that may be used as values for many parameters in the PrintList Pro commands. See the Constants
tab of the Explorer in the 4D Design environment.

These constants are categorized according to the type of command that they are associated with, such as PLP Break Levels, PLP
Colors, etc.

Specifying the Arrays to Print

4D arrays are passed to PrintList Pro via the PL_AddColumn or PL_SetArraysNam commands.

These commands must be called before any other PrintList Pro commands are executed.

These two functions return 0 if successful, or an error code indicating the problem:

Constant Value Action
PL SetArrays Passed
PL Not an array

Check to make sure all arrays are correctly typed

PL Wrong type of array Pointer and two-dimensional arrays are not allowed

PL Wrong number of rows Make sure that all arrays have the same number of elements

PL Maximum number of arrays exc 32767 arrays is the maximum

albh|lw|I M|~ |O

PL Not enough memory Unlikely these days

Up to 32767 arrays can be printed by PrintList Pro, with up to fifteen columns specified in each call to PL_SetArraysNam.

The position of the first array, columnNumber, and the number of arrays, numArrays, are also specified in this command. All array
types except for pointer are allowed, and all arrays must have the same number of elements.

The maximum number of rows is only limited by available memory.

Aternately to standard single-dimension arrays, one dimension of a two-dimensional array may be passed to PL_SetArraysNam
e.g. “My2DArray{1}” may be passed as array1.

PL_AddColumn can be used to add or insert an array or field column through a pointer.

Using Defined Constants with PrintList Pro - Specifying the Arrays to Print

Q.

Configuring PrintList Pro

Printing Records

PrintList Pro provides the capability to print 4D records directly, rather than using arrays. Please read the section Field and Record
Commands for more information.

Headers

The column header labels are set using PL_SetHeaders. The headers can be printed on all pages, the first page or not at all using
PL_SetHdrOpts.

The font, size, and style of each header may be set individually using PL_SetHdrStyle. The justification may be set using PL_
SetFormat and the color of the headers using PL_SetForeClr or PL_SetForeRGBColor.

Multiple lines of text may be shown in the headers using PL_SetHeight.

Sorting Arrays

PrintList Pro can perform multi-level sorting upon all the arrays using PL_SetSort.

Up to 15 levels of sorting are available, and each column specified in the sort order can be sorted in either ascending or descending
order.

While 15 columns can be used for the sorting critera, all the arrays passed to PrintList will stay “in sync” and reflect the new sort
order.

Some of the arrays can be hidden from printing using PL_SetColOpts, which allows all the arrays to be kept in sync for sorting
purposes, yet hides them during actual printing.

If the arrays passed to PrintList Pro are already sorted, use PL_SetBrkOrder to communicate the sort order to PrintList Pro without
performing another sort.

Also, repeated values in a list can be suppressed using PL_SetRepeatVal. Please read the section Break Level Processing for
more information.

If a column containing a picture array is passed to PL_SetSort, it will be ignored (skipped).

Formatting

Use PL_SetFormat to control the format and justification of all array information.
All valid 4D formats may be used including any custom formats created in the Design Environment.

If you are calling PrintList Pro from a component, make sure that the Design formats that you are using are defined in the component
itself.

See Break Level Processing for information about formatting break headers and break footers.

Printing Records - Headers - Sorting Arrays - Formatting

Q.

Configuring PrintList Pro

Styles

Constants

Styles are set using 4D constants. The different values in the table below can be added together to produce combinations of styles.
For example, bold italic has a value of 3.

Value Style (constant)

0 Plain

1 Bold

2 Italic

4 Underline

8 Outline (obsolete)

16 Shadow (obsolete)

32 Condensed (obsolete)
64 Extended (obsolete)

Column and Header Styles

Styles for arrays can be set on a column by column basis using PL_SetStyle to set the style for the data, and PL_SetHdrStyle to
set the header style.

If a 0 (zero) is used in the columnNumber parameter, the style will be applied to all columns.

Row-Specific Styles
PL_SetRowsStyle is used to set the font and style of a specified row, and will override any column specification.

Do not use row specific commands to modify all rows if you want to set the whole area. Set the columns instead.

Cell-Specific Styles
Individual array elements, called cells, can be assigned a unique font, size and style.
This capability can be used to provide special formatting to design more attractive and useful reports.

You can use PL_SetCellStyle to set the font, size and style configuration for an individual cell, a range of cells, or a selection of
discontiguous cells. You can choose to set all or just one of the style attributes of this command.

PrintList Pro will keep the cell and row-specific style settings with a row when the list is sorted.

If you do not want the cell and row style settings to move when the list is sorted, you should use the cell and row style routines after
the call to PL_SetSort.

Styled text

PrintList Pro supports the styled text feature of 4D v12 and above. When 4D passes styled text to PrintList Pro, it should be printed
correctly if the attributed option has been set with PL_SetFormat.

If this option is set, special tags can also be used in any text contained in a PrintList Pro area to print styled characters.

Styles

Q.

Configuring PrintList Pro

These tags work just like HTML tags: <tag>styled text</tag>. See PrintList Pro Text Style Tags

Colors

Q|28

Configuring PrintList Pro

Colors

When using color or grayscale printers, many PrintList objects can be given color settings. Be sure to set the printer Color/
Grayscale option to obtain the proper results.

Defining colors

There are three ways to define colors in PrintList Pro.

PrintList Pro’s palette

PrintList Pro has its own palette, including the following colors:

Color Constant
White PL White
Black PL Black
Magenta PL Magenta
Red PL Red
Cyan PL Cyan
Green PL Green
Blue PL Blue
Yellow PL Yellow
Gray PL Gray
Light gray PL Light gray
4D’s palette

The 4D color palette is a 16 by 16 grid. To determine a color’s value, you can locate the color’s position on the color grid in the
Design environment (the Color submenu which is available in the Form and Method editors), and count the number of rows down
and columns across.

The equation is: ColorValue = ((RowNumber — 1) x 16) + ColumnNumber.

RGB colors

In addition, PL_SetForeRGBColor and PL_SetBackRGBColor can be used to perform similar settings with standard RGB values.

Column and Header Colors

Foreground and background colors can be specified for a PrintList Pro object using PL_SetForeCIr and PL_SetBackClr.

The foreground color can be specified for each column and column header, and the background color can be specified for the list
and header areas.

Colors - Multiple Lines in each Row - Variable Height Rows

Q.

Configuring PrintList Pro

Row-Specific Colors

PL_SetRowColor is used to set the foreground and background color of a specified row, and will override any column specification.

You can revert to the original column settings by setting the plpRowForeColor or plpRowBackColor parameter to the empty string
("), and the 4dRowForeColor or 4dRowBackColor parameter to -1.

PL_SetRowRGBColor can be used to perform similar settings with standard RGB values. Use this command to override all row-
specific color settings by passing 0 for the rowNumber parameter.

Do not use row specific commands to modify all rows if you want to set the whole area. Set the columns instead.

Cell-Specific Colors

Individual array elements, called cells, can be assigned a unique foreground color and background color.

This capability can be used to set negative numbers in red, provide special formatting to show the current selected or enterable cell,
and design more attractive and useful lists.

You can use PL_SetCellColor or PL_SetCellRGBColor to set the color configuration for an individual cell, a range of cells, or a
selection of discontiguous cells.

PrintList Pro will keep the cell and row-specific color setting with a row when the list is sorted.

If you do not want the cell and row color settings to move when the list is sorted, be sure to call the cell and row color routines after
the call to PL_SetSort.

Multiple Lines in each Row

Multiple lines of text can be shown for each row using PL_SetHeight. All rows will be printed with the number of lines specified, or
with a variable height for each row.

PL_SetHeight can also be used to give each row additional space above and below the row’s contents to give more spread out
rows vertically.

Variable Height Rows

All rows can be printed with a varying height depending on the data that is to be printed. For rows, PrintList Pro will examine each
row’s text and picture element using the applied font and style settings to determine the tallest cell of each row.

Any given row can be of no height (i.e. no data) up to the height of an entire page. For any row that is larger than a page, PrintList
Pro will attempt to show as much of it as possible by starting the row at the top of the page. The row will be truncated to a page —
no one row can span two pages.

To set all rows to be variable height, use PL_SetHeight and set the numRowLines parameter to zero.

Setting an individual row or cell font size may cause PrintList Pro to override a fixed height row setting and print the row using a
larger height.

In order to accommodate the larger font, PrintList Pro uses the variable height calculation to determine the height of the row based
upon the font size setting.

When variable row height is used, Picture columns are used for row height calculation, too (even when usePictHeight in PL
SetFormat was set to zero).

Column Widths - Dividing Lines, Frame and Header Separator Lines - Using Picture Arrays

Q.

Configuring PrintList Pro

Column Widths

Columns are automatically sized by default; however, a column size can be programmed using PL_SetWidths

All widths are given in pixels.

Dividing Lines, Frame and Header Separator Lines

Dividing lines can be added between rows and columns using PL_SetDividers or PL_SetRGBDividers. The line width, pattern
(transparency ratio), and color of the lines can be specified. The default is no dividing lines.

The PrintList Pro frame and header separator (the line between the headers and the list or detail area) lines can be set using
PL_SetFrame.

You (or the database end-user) must be sure to set the Color/Grayscale option in the print dialog when using colors.

Hairline Line Width

Lines can be printed a fraction of the line width seen on screen (1 pixel).

Typically, ¥4 (.25) pixel produces the best results. All the lines that PrintList Pro prints may be given a fractional line width.

Double lines

Double lines (typical in accounting) are now supported in breaks: just use 2.0 as the lineWidth (5" parameter to PL_SetBrkColOpt/
PL_SetBrkColRGBOpt/PL_SetBkHColOpt/PL_SetBkHCoIRGBOpt). Two 0.25 point lines will be printed.

Using Picture Arrays

PrintList Pro supports the printing of picture arrays. The format parameter of PL_SetFormat will cause the picture to be printed in
one of five ways:

m truncated and justified to the upper left of the cell
m truncated and centered in the cell

m scaled to fit the cell

m scaled proportionally to fit the cell

m scaled proportionally to fit the cell and centered

The usePictHeight parameter of PL_SetFormat will tell PrintList Pro whether to use a picture’s original height, which is stored with
the picture, when calculating the row height for the PrintList Pro area.

If you choose not to use the picture’s height in the row height calculation and additional space is needed to print the picture, the
numRowLines parameter of PL_SetHeight should be used to increase the row height.

End of Page Callback Method - Performance Issues with Formatting Commands-Borders and Frames -Header/Cell Icon Support

Q.

Configuring PrintList Pro

End of Page Callback Method

In 4D, a “callback” method is a project method called from an plug-in. PrintList Pro makes use of a callback method to inform you
when the end of a printed page is reached.

This enables you to perform any necessary processing associated with the end of the page, for example, changing information
printed in the footer area of that page or the header area of the next page.

Use PL_SetPageProc to specify the 4D method PrintList Pro is to call. PrintList Pro will pass the method specified by callbackMethod
two parameters: the first indicates which PrintList Pro area is calling the method, and the second specifies the last row printed on
that page.

Performance Issues with Formatting Commands

PrintList Pro uses an algorithm to automatically size the columns. Because of this, there is usually no need to use PL_SetWidths to
manually size a column prior to printing a list.

However, if the number of items in the list is very large (several thousand items with many columns), then the list might take a few
seconds longer to generate, due to the automatic sizing calculation.

If this is the case, using PL_SetWidths will improve the generation time of the list. Text arrays will take the longest to automatically size.

Since you can use PL_SetWidths on just some of the columns, if you are printing very large arrays, but only one is text, you could
use PL_SetWidths on just the text array, and let PrintList Pro automatically calculate the other column widths.

PL_SetFormat does not affect the performance of PrintList Pro, regardless of the size of the arrays being printed.

Borders and Frames

PL_SetCellBorder provides the ability to set the border style for a cell.

PL_SetCellFrame prints a frame around a range of cells.

Both commands use RGB colors.

Header/Cell Icon Support

Picture Objects in Cells

PL_SetCelllcon uses 4D Picture Library items to place icons into individual cells.

This routine includes an iconRef parameter, which is the reference number of a picture from the Design environment Picture
Library. Pass zero (0) if you do not want any icon for the cell.

Picture Objects in Headers

In addition, PL_SetCelllcon provides the ability to procedurally place icons in column headers using 4D Picture Library objects.

Pass zero (0) in the cellRow parameter to set the header.

Creating your first CalendarSet Area-Advanced Properties or Commands?

Configuration Commands

Configuration Commands

|32

PL_Register

(registrationCode:T; options:L; email:T) = result

Parameter Type Description

= registrationCode text Pass the registration key to register your copy of PrintList Pro. The key is either linked to the
4D or 4D Server serial number (individual licenses), to the machine ID (merged licenses), to the
name of the company/developer (unlimited annual licenses) or to the product (master keys for
Online instant activation).

= options longint An optional longint combining up to 4 bits.
= email text Online instant activation option: developer email to notify when a license is issued or resent.
+~ result longint 0 or error code.

PL_Register is used to register the PrintList Pro plugin for standalone or server use.
Please see the License Types section for detailed information about the licensing options available for PrintList Pro.

Multiple calls to PL_Register are allowed. The plugin will be activated if at least one valid key is used, and all subsequent calls to
PL_Register will return 0, unless the force check bit is set to true in the options parameter.

registrationCode — You must call PL_Register with a valid registration key, otherwise PrintList Pro will operate in demonstration
mode - it will cease to function after 20 minutes. In case a master key is used the plugin will attempt a connection to e-Node’s
license server for Online instant activation.

options — Optional. This parameter combines up to 4 bits as described below. The default mode (registrationCode being a
passed as the only parameter) is silent: no force check, no confirmation, no alert, no email.

Bit number Description
0 Force check: if this bit is is on (true), registrationCode is tested regardless of current registration state. If the plugin was not
previously registered and the result is 0, it is registered the same way as if the bit was off (or the whole options parameter
omitted)

If the plugin was previously successfully registered, a registration error will be returned in result in case registrationCode is
invalid, but the plugin will remain registered

1 Online instant activation option: confirm connection “Is it OK to connect to e-Node’s license server to register PrintList Pro?”

Online instant activation option: display alert if registration error

Online instant activation option: display alert if registered

email — Optional. The developer email address where to send Online instant activation information.

Commands

Q.

Configuration Commands

result — O or error code:

Result code Description
0 OK
1 Beta license has expired
2 Invalid license
3 The license has expired
4 The OEM license has expired
5 The maximum number of users has been exceeded
6 The license is for a different environment (e.g. the licence is for a single-user version, but you are using it with 4D Server)
7 The license is linked to a different 4D license
8 Invalid merged license
9 Only serial/ID licenses are allowed in text license files (includes Register button and Online instant activation)
10 Unauthorized master key (Online instant activation)
11 Can't connect to e-Node's license server to perform Online instant activation
12 No Online instant activation license available for this master key (unknown or all used)

When PL_Register is called with an empty string, the license dialog will be displayed if PrintList Pro is not registered and the
dialog was not yet displayed. This allows you to show the registration dialog to your users without effectively calling a PrintList Pro
command or displaying a PrintList Pro area.

Note: alternately to PL_Register, you can place a plain text file into your 4D Licenses folder or use the Demo mode dialog
“Register” button. This is only valid for non-unlimited licenses.

Basic example
C_LONGINT ($result)
$result:=PL_Register ("YourRegistrationKey")
Case of
($result=2)
ALERT ("The PrintList Pro licence is invalid.")
($result=3)
ALERT ("The PrintList Pro licence has expired.")

etc.

End case

Example with multiple calls
C_LONGINT ($result) //ignored in this case
$result:=PL_Register ("Registration key one")
$result:=PL_Register ("Registration key two")
$result:=PL_Register ("Registration key three")

etc.
If ($result#0) //registration failed on all keys
ALERT ("PrintList Pro could not be registered.")
End if

Commands

Q.

Configuration Commands

Force check example

In this example we assume that only "Registration key two" is valid, but you want to check the other keys status.
C_LONGINT ($result)
$result:=PL_Register ("Registration key one";1) //invalid, will return an error, the plugin isn’t registered
$result:=PL_Register ("Registration key two";1) //valid, will return 0, the plugin is registered

$result:=PL_Register ("Registration key three";1) //invalid, will return an error, the plugin is still registered

Online instant activation examples

Confirm connection, alert if successful, alert if failed, send email notification to developer@4dchampions.com:
C_LONGINT ($result)
$result:=PL_Register ("Master key";0 ?+1 ?+2 ?+3;"developer@4dchampions.com")

Silent connection, alert if successful, alert if failed, no email notification:
C_LONGINT ($result)
$result:=PL_Register ("Master key";0 ?+2 ?+3)

%PrintListPro

%PrintListPro is the command used to identify the PrintList Pro plugin area when you create a plugin area object on a layout.

This command is only used in the object definition for a PrintList Pro object, and should never be used as a command in a method.

Commands

Q.

Configuration Commands

PL_AddColumn

(areaRef:L; dataPointer:Z; insertAt:L) = result:L

Parameter Type Description

— areaRef longint PrintList Pro area reference.

— dataPointer pointer Pointer to an array or a field.

= insertAt longint Position where to insert the column.
~ result longint 0 if successful.

PL_AddColumn adds a column at the specified position.
areaRef — PrintList Pro area reference.
dataPointer — This parameter specifies the data to print in the inserted column.

m when in Records mode, this parameter must be a pointer to a field

m when in Arrays mode, this parameter must be a pointer to an array (not a local array!)

insertAt — Position where to insert the column. Zero means “append to the end”.
This command supports the component architecture (using arrays from the host database in a component and vice versa).

This command can be used as an alternative to PL_SetArraysNam, but requires one line per array. See the Calculated columns
Array mode example.

Examples
$error:= PL_AddColumn(eList;->aState;0) //add a column containing aState array at the end

$error:= PL_AddColumn(eList;->aCity;1) //insert a column containing aCity array at position 1

PL_SetArraysNam

(areaRef:L; columnNumber:L; numArrays:L; array1:T; ...; arrayN:T) = result:L

Parameter Type Description

— areaRef longint PrintList Pro area reference.

= columnNumber longint Column at which to set the first array.
= numArrays longint Number of arrays to set (up to 15).

— array1; ...; arrayN text Name(s) of 4D array(s).

~ result longint 0 if successful.

PL_SetArraysNam tells PrintList Pro what arrays to print. Up to fifteen arrays can be set at a time. Any 4D array type can be used
except pointer and two-dimensional arrays.

Since PrintList Pro can print up to 32767 arrays, this command may have to be used more than once.

There are three very important points to note about this command:

m This command must be called first, before any of the other commands, in the On Printing Detail phase.

m The columns must be added in sequential order, unless the particular column has already been added. In other words, to set 30
arrays, you must set arrays 1 through 15 prior to setting arrays 16 through 30.

Commands

Q.

Configuration Commands

m All arrays set with this command must have the same number of elements as each other and as any other arrays previously set.

You can pass process arrays and interprocess arrays to PrintList Pro, but not local arrays (a local array has a name that starts with
a "$" character; an interprocess array has a name that starts with "<>" characters).

One dimension of a two-dimensional array may be passed in the array1; ...; arrayN parameters. For example: "my2DArray{1}" may
be passed as array1.

areaRef — PrintList Pro area reference.

columnNumber — This parameter specifies the column number to set the first array being passed by this call of PL_SetArraysNam.

numArrays — This parameter specifies the number of columns being set with this call to PL_SetArraysNam.

Examples
Case of
:(Form event=0n Printing Detail)

SELECTION TO ARRAY ([Contacts]FN;aFN;[Contacts]LN;aLN;[Contacts]City;aCity;\
[Contacts]State;aState) //load the arrays

$error:=PL_SetArraysNam (eNameList;1;4;"aFN";"aLN";"aCity";"aState") //starting at column 1,

set 4 arrays to print through the plugin area eNameList
End case
/I Set up the eList PrintList Pro object with 25 arrays
//two calls must be made since only 15 arrays can be passed each time
$error:=PL_SetArraysNam (eList;1;15;"array1";"array2";"array3";"array4";"array5";
"array6";"array7";"array8";"array9";"array10";"array11";"array12";"array13";"array14";"array 15")
$error:=PL_SetArraysNam (eList;16;10;"array16";"array17";"array18";"array19";"array20";
"array21";"array22";"array23";"array24";"array25")

PL SetHeaders

(areaRef:L; columnNumber:L; numHeaders:L; header1:T,; ...; headerN:T)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= columnNumber longint Column at which to set up the first header.
= numHeader longint Number of headers to set (up to 15).

= header1; ...; headerN text Value(s) to print in column header(s).

PL_SetHeaders is used to specify the value to print in the header for each column. Up to fifteen headers can be set at a time.

The size of the header value is used by the automatic column sizing algorithm. If you are printing a text array containing 2 character
strings, the column will be very narrow, unless you specify a header which contains several characters.

For example, states are usually stored in a database as a two-character string. But if you specify a header of “State” the column will
be sized about two and a half times wider.
If the header length is less than the values being printed in the column, then the header length will not affect the column width.

A, B, C, etc. will be printed in the headers if PL_SetHeaders is not used.

Commands

Q.

Configuration Commands

Examples
Serror:=PL_SetArraysNam (eNamelList;1;4;"aFN";"aLN";"aCity";"aState")
PL_SetHeaders(eNamelList;1;4;"First Name";"Last Name";"City";"State")
Serror:=PL_SetArraysNam (eNames;1;2;"aFN";"aLN")
PL_SetHeaders(eNames;1;2;Field name([People]FirstName);Field name([People]LastName))

PL_SetFormat

(areaRef:L; columnNumber:L; format:T; columnJust:L; headerJust:L; usePictureHeight:L; attributed:L; lineSpacing:F;
vertAlignment:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= columnNumber longint Column at which to set the format and justification.

- format text Format to use.

= columnJust longint Justification for column list items.

= headerJust longint Justification for column header.

= usePictHeight longint Use the picture height in the row height calculation.

= attributed longint Use attributed (multi-style) text: 0 = no, 1 = yes.

= lineSpacing real Line spacing to use.

= vertAlignment longint Vertical alignment: 0 = default, 1 = top, 2 = center, 3 = bottom.

PL_SetFormat is used to control the format and justification of a column being printed. You can control the format of integer, real,
date, boolean, and picture columns with the format parameter. Time values can be formatted also, since they use long integer
arrays.

Any valid 4D format, including custom formats created in the Design environment, may be used with these column types.
Text columns can only be formatted using styled text with the attributed parameter set to 1.

Additionally, null time and date values can be set to print a blank by appending a dash character (“-") to the format text parameter.

The defaults for the different column types are:

Column Type Format
(Long) Integer "# B RO
Real "# #iHt ##0.00"
Boolean "True;False"
Date "0"

Picture "0"

Note: since version 5.3, unused characters are stripped from the format instead of replacing “number sign” placeholders by
non-breaking space (e.g. "1234" formatted with "###-###-###" will produce "1-234", not " - 1-234" as before).

Commands

Q.

Configuration Commands

format (for text arrays) — Not supported, except for attributed text according to the value set by the attributed parameter.

format (for numeric arrays) — See the 4D command String in the 4D Language Reference for the possible values. Any valid 4D
numeric format may be used.

format (for boolean arrays) — The string contains two formats, one for the True value, the other for the False value, separated by
a semicolon. Examples: "Male;Female" and "MacOS;Windows".

format (for date arrays) — See the 4D command String in the 4D Language Reference for the possible values. Any valid 4D date
format may be used. Examples: "0" or "3" are valid formats.

Format Example

09/21/16 (default)

9/21/16

Wed, Sep 21, 2016

Wednesday, September 21, 2016
09/21/16 or 09/21/1996
September 21, 2016

Sep 21, 2016

ol lW N~ O

format (for “time” arrays) — See the 4D String command in the 4D Language Reference, and the 4D Design Reference discussion
of formatting for the possible values. There are no time arrays in 4D as such, they are in reality long integer arrays. These arrays
are printed as time PL_SetFormat values by using the proper format. The format is the two character sequence "&/" followed by the
number given in the discussion of the String command. For example, one proper format for a time array would be "&/2".

Format Example

0 01:02:03

1 01:02

2 1 hour 2 minutes 3 seconds
3 1 hour 2 minutes

4 1:02 AM

format (for picture arrays):

Format Description

0 The picture will be truncated, if necessary, and justified to the upper left (default)

1 The picture will be truncated, if necessary, and centered in the cell

2 The picture will be scaled to fit the cell

3 The picture will be scaled to fit the cell, and remain proportional to its original size

4 The picture will be scaled to fit the cell, remain proportional to its original size, and centered in the cell

In addition:
m If format is not specified or out of range, the value will be interpreted as 0
m Formats 1 and 4 are always centered, format 2 fills the whole rectangle

m Only formats 0 and 3 will use the specified columnJust (default alignment is centered for these two formats)

Commands

a|39

Configuration Commands

columnJust and headerJust — The justification for a column and its header can be controlled independently.

The possible values are:

Value Justification
0 Default

1 Left

2 Center

3 Right

By default, headers are left justified, unless the column elements are center justified. In that case, the header will default to center
justification.

The default column justifications for the different column types are:

Column type Default column justification

Long Integer (including Time) Right

Real Right

Boolean Left

Date Right

Text Left

Picture Depending on the format parameter

The columnJust parameter is only used for picture columns where the format parameter is set to 0 or 3 (or not specified or out of
range). Other values will use the format parameter to justify picture columns.

usePictHeight:

Value Mode
0 Ignore the picture height when calculating the row height (default)
1 Use height of the largest picture when calculating the row height

If the column columnNumber does not have a picture column, this parameter will be ignored.

If the list is configured to automatically calculate variable height rows, then picture array elements are always included in the
automatic calculation, and this parameter is ignored. See PL_SetHeight and Variable Height Rows for more information.

attributed — Styled text:

Value Mode
0 Plain text (default)
1 (or any non-zero value) — attributed (styled) text

Note: the styled text property is applied to all formatting in that column... breaks have to account for that!

Commands

Configuration Commands

lineSpacing — Line spacing to use (real value). 0 is substituted by 1.0 (default), which is also the default line spacing value used
by ArealList Pro and SuperReport Pro.

Line spacing is used for space between lines.

It is computed from the font height as (Ascent + Descent) * lineSpacing

In other words it is a percentage of the font height to use for advancing the text to the next line.
When it is 1.0 (default), next line starts right below the previous one.

For example, if you enter 2 as lineSpacing you will get (in the same cell):
Line 1
Line 2
Line 3
Instead of:
Line 1

Line 2
Line 3

Examples
/lFormat a real column (3rd column), default column justification, center header justification
PL_SetFormat (names;3;"$###,###.00";0;2;0)
/[Format a boolean column (4th column), right column justification and left header justification
PL_SetFormat (elist;4;"Male;Female";3;1;0)
/lFormat style 3 for a date column, default justification (5" column), default column and header justification, suppress null dates
PL_SetFormat (eNames;5;"3-")
/[Format style 2 for a time column, right justification for header and column (7th column)
PL_SetFormat (elList;7;"&/2";3;3;0)
/I Custom format style, default justification for column, center header (5"column), attributed text, "compatible" line spacing
PL_SetFormat (eNames;5;"|Dollars";0;2;0;1;1)
/I Scale picture column to fit proportionally (1st column), use default header justification, use picture size in row height calculation
PL_SetFormat (eList;1;"3";0;0;1)

vertAlignment — Vertical alignment:

Format Description
0 Default

1 Top

2 Center

3 Bottom

Commands

|40

http://www.e-node.net/alp
http://www.e-node.net/srp

Q.

Configuration Commands

PL_SetWidths

(areaRef:L; columnNumber:L; numWidths:L; width1:L; ...; widthN:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= columnNumber longint Column at which to set the first width.

= numWidths longint Number of widths to set (up to 15).

= width1; ...; widthN longint Pixel width(s) of column(s).

PL_SetWidths is used to set the pixel width for one or more columns. Up to fifteen widths can be set at a time.
A width of zero forces a column to be sized automatically based on its data type.

A column cannot be less than 3 pixels wide. If you pass a value of less than 3 but greater than zero, PrintList Pro will ignore it and
use 3.

PrintList Pro will not let a column be wider than the width of the list area minus 20.

If not called, the default width for all columns is determined based on the type of array or field printed in the column.

Example
Serror:=PL_SetArraysNam (eNames;1;5;"aFN";"aLN";"aCity";"aState";"aZip")
PL_SetWidths(eNames;1;5;150;50;0;100;0) //0 forces autosizing for that column

PL_SetHdrStyle

(areaRef:L; columnNumber:L; fontName:T; size:L; styleNum:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= columnNumber longint Column for which to set the header style.
— fontName text Name of the font to use.

= size longint Size of the font.

= stylenum longint Style of the font.

PL_SetHdrStyle is used to control the appearance of the PrintList Pro column headers.
The columns can be controlled individually or as a group.

columnNumber — This parameter specifies what column header to apply the style to. Use a value of zero (0) to apply the
parameters to all columns.

fontName — Use this parameter to specify the font for the specified columnNumber. If not called, or the specified font name is not
found, the header(s) will be printed in the OS defined System Font. If the font is not installed, then the System Font will be used.

styleNum — This parameter is a font style code. Use the Style constants, which can be combined.

Note: if bold or italic styles are set, but not installed for the font, PrintList Pro will print regular (plain) characters.

Commands

Q.

Configuration Commands

Examples
PL_SetHdrStyle(eList;1;"Geneva";12;1) //Geneva 12 point bold, column 1
PL_SetHdrStyle(Names;3;"New York";12;3) //New York 12 point bold italic, column 3
PL_SetHdrStyle(Names;0;"Palatino";10;3) //Palatino 10 point bold italic, all columns

PL_SetHdrOpts

(areaRef:L; printHeaders:L; printPixelWidth:L)

Parameter Type Description

- areaRef longint Reference of PrintList Pro object on layout.
= printHeaders longint Print the headers above the list.

= printPixelWidth longint Print column widths in the header.

PL_SetHdrOpts is used to control several PrintList Pro options pertaining to column headers.

printHeaders:

Value Mode

0 No headers will be printed (default)

1 Headers will be printed only on the first page
2 Headers will be printed on all pages

printPixelWidth — Used during development to allow you to easily determine what pixel width looks best for each column:

Value Mode

0 The normal header text will be printed (default)

1 The width of the column will be printed in each header
Examples

PL_SetHdrOpts(elist;2;0) //print headers on all pages, no pixel widths
PL_SetHdrOpts(elList;1;1) //print headers on first page, and pixel widths

Commands

Configuration Commands

|43

PL_SetMiscOptions

(areaRef:L; escapeChar:T; useEllipsis:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
— escapeChar text Escape character (obsolete).

= useEllipsis longint Use ellipsis.

PL_SetMiscOptions is used to control miscellaneous PrintList Pro options.

escapeChar — Obsolete, ignored.

useEllipsis — Determines if auto-ellipsis is used when columns are smaller than the printed data:

Value Mode
0 Use ellipsis in header and column data
1 Don’t use ellipsis in header and column data (default)

PL_SetStyle

(areaRef:L; columnNumber:L; fontName:T; size:L; styleNum:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= columnNumber longint Column for which to set the style.

—= fontName text Name of the font to use.

= size longint Size of the font.

= styleNum longint Style of the font.

PL_SetStyle is used to control the appearance of the PrintList Pro columns. The columns can be controlled individually or as a

group.

columnNumber — This parameter specifies what column to apply the style to. Use a value of zero (0) to apply the parameters to

all columns.

fontName — Use this parameter to specify the font for the specified columnNumber. If not called, or the specified font name is not

found, the column(s) will be printed in the OS defined System Font. If the font is not installed, then the System Font will be used.

styleNum — This parameter is a font style code. Use the Style constants, which can be combined.

Note: if bold or italic styles are set, but not installed for the font, PrintList Pro will print regular (plain) characters.

Examples

PL_SetStyle(eNames;0;"Geneva";9;0) //Geneva 9 plain, all columns
PL_SetStyle(elist;4;"Helvetica";12;32) //Helvetica 12 point condensed, 4th column
PL_SetStyle(eNames;1;"Times";9;1) //Times 9 point bold, 1st column

Commands

Q.

Configuration Commands

PL_SetForeClr

(areaRef:L; columnNumber:L; plpHdrForeColor:T; 4dHdrForeColor:L; plpListForeColor:T; 4dListForeColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= columnNumber longint Column number.

- plpHdrForeColor text Header foreground color from PrintList Pro’s palette.
— 4dHdrForeColor longint Header foreground color from 4D’s palette.

- plpListForeColor text List foreground color from PrintList Pro’s palette.

— 4dListForeColor longint List foreground color from 4D’s palette.

PL_SetForeClir is used to specify the foreground colors for a column header and a list area column.
columnNumber — The column for which to set the foreground color. Use a value of zero (0) to apply the parameters to all columns.

plpHdrForeColor — Name of the color in PrintList Pro’s palette. This will be the foreground color for the column header. If the name
is not in PrintList Pro’s palette or it is a null string, then 4dHdrForeColor will be used.

4dHdrForeColor — 1 to 256. The color at this position in 4D’s palette will be used for the foreground color for the column header.

plpListForeColor — Name of the color in PrintList Pro’s palette. This will be the foreground color for the column. If the name is not
in PrintList Pro’s palette or it is a null string, then 4dListForeColor will be used.

4dListForeColor — 1 to 256. The color at this position in 4D’s palette will be used for the foreground color for the column.

If PL_SetForeClr is not called, the default is black for both the header and list foreground colors.

Examples
/IRed for column header foreground, light gray for column foreground (all columns)
PL_SetForeClr(eNames;0;"Red";0;"Light Gray";0)
/I Green for column header foreground, 13th color from 4D’s palette for column foreground (4th column)
PL_SetForeClr (eNames;4;"Green";0;"";13)

Commands

Q.

Configuration Commands

PL _SetForeRGBColor

(areaRef:L; columnNumber:L; hdrForeRed:L; hdrForeGreen:L; hdrForeBlue:L; listForeRed:L; listForeGreen:L; listForeBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= columnNumber longint Column number.

= hdrForeRed longint Header fore red.

= hdrForeGreen longint Header fore green.

= hdrForeBlue longint Header fore blue.

- listForeRed longint List fore red.

- listForeGreen longint List fore green.

= listForeBlue longint List fore blue.

PL_SetForeRGBColor is used to specify the foreground colors for a column header and a list area column, using the RGB values.

This routine is similar to PL SetForeClr.

hdrForeRed — Header foreground RGB red value.

hdrForeGreen — Header foreground RGB green value.

hdrForeBlue — Header foreground RGB blue value.

listForeRed — List foreground RGB red value.

listForeGreen — List foreground RGB green value.

listForeBlue — List foreground RGB blue value.

Example

The following example will tell PrintList Pro to print the third column using a color scheme standard for MacOSX:
PL_SetForeRGBColor (xArea;3;237;254;243;237;254;243)

Commands

Configuration Commands

|46

PL_SetBackCir

(areaRef:L; plpHdrBackColor:T; 4dHdrBackColor:L; plpListBackColor:T; 4dListBackColor:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.

- plpHdrBackColor text Header background color from PrintList Pro’s palette.
= 4dHdrBackColor longint Header background color from 4D’s palette.

= plpListBackColor text List background color from PrintList Pro’s palette.

= 4dListBackColor longint List background color from 4D’s palette.

PL_SetBackClr is used to specify the background colors for the header and list area.

While the foreground color can be specified for each column, the background color for the header or the list area can only be
specified for all columns using this command. You need to use PL_SetColBackColor or PL_SetColBackRGBColor to set the
background colors of each column’s header and each column itself.

plpHdrBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the column header. If the
name is not in PrintList Pro’s palette or it is a null string, then 4dHdrBackColor will be used.

4dHdrBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the background color for the column header.

plpListBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the column. If the name is
not in PrintList Pro’s palette or it is a null string, then 4dListBackColor will be used.

4dListBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the background color for the column.

If PL_SetBackClr is not called, the default is white for both the header and list background colors.

Examples
/[Light gray for header background, white for list background, all columns
PL_SetBackCIr(eNames;0;"Light Gray";0;"White";0)
/I White for header background, 13th color from 4D’s palette for list background, 1st column
PL_SetBackClIr (eNames;1;"White";0;"";13)

Commands

Q.

Configuration Commands

PL _SetBackRGBColor

(areaRef:L; hdrBackRed:L; hdrBackGreen:L; hdrBackBlue:L; listBackRed:L; listBackGreen:L; listBackBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= hdrBackRed longint Header back red.

= hdrBackGreen longint Header back green.

= hdrBackBlue longint Header back blue.

- listBackRed longint List back red.

- listBackGreen longint List back green.

= listBackBlue longint List back blue.

PL_SetBackRGBColor is used to specify the background colors for the header and list area, using the RGB values. This routine
is similar to PL_SetBackClr.

While the foreground color can be specified for each column, the background color for the header or the list area can only be
specified for all columns using this command. You need to use PL_SetColBackColor or PL_SetColBackRGBColor to set the
background colors of each column’s header and each column itself.

hdrBackRed — Header background RGB red value.
hdrBackGreen — Header background RGB green value.
hdrBackBlue — Header background RGB blue value.
listBackRed — List background RGB red value.
listBackGreen — List background RGB green value.

listBackBlue — List background RGB blue value.

Example

The following example will tell PrintList Pro to print the list using a color scheme standard for MacOS X:
PL_SetBackRGBColor (xArea;237;254;243;237;254;243)

Commands

Q.

Configuration Commands

PL SetColBackColor

(areaRef:L; columnNumber:L; plpHdrBackColor:T; 4dHdrBackColor:L; plpListBackColor:T; 4dListBackColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= columnNumber longint Column number.

- plpHdrBackColor text Header background color from PrintList Pro’s palette.
= 4dHdrBackColor longint Header background color from 4D’s palette.

- plpListBackColor text List background color from PrintList Pro’s palette.

= 4dListBackColor longint List background color from 4D’s palette.

PL_SetColBackColor is used to specify the background colors for a column header and a list area column.
columnNumber — The column for which to set the background color. Use a value of zero (0) to apply the parameters to all columns.

plpHdrBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the column header. If the
name is not in PrintList Pro’s palette or it is a null string, then 4dHdrBackColor will be used.

4dHdrBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the background color for the column header.

plpListBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the column. If the name is
not in PrintList Pro’s palette or it is a null string, then 4dListBackColor will be used.

4dListBackColor — 1 to 256. The color at this position in 4D’s palette will be used for the background color for the column.

If PL_SetColBackColor is not called, the default is white for both the header and list background colors.

Examples
/[Light gray for header background, white for list background, all columns
PL_SetColBackColor(eNames;0;PL Light gray;0;PL White;0)
/[White for header background, 13th color from 4D’s palette for list background, 1st column
PL_SetColBackColor(eNames;1;PL White;0;";13)

Commands

Q.

Configuration Commands

PL_SetColBackRGBColor

(areaRef:L; columnNumber:L; hdrBackRed:L; hdrBackGreen:L; hdrBackBlue:L; listBackRed:L; listBackGreen:L; listBackBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= columnNumber longint Column number.

= hdrBackRed longint Header back red.

= hdrBackGreen longint Header back green.

= hdrBackBlue longint Header back blue.

- listBackRed longint List back red.

- listBackGreen longint List back green.

= listBackBlue longint List back blue.

PL_SetColBackRGBColor is used to specify the background colors for a column header and a list area column, using the RGB
values. This routine is similar to PL_SetColBackColor.

columnNumber — The column for which to set the background color. Use a value of zero (0) to apply the parameters to all columns.
hdrBackRed — Header background RGB red value.

hdrBackGreen — Header background RGB green value.

hdrBackBlue — Header background RGB blue value.

listBackRed — List background RGB red value.

listBackGreen — List background RGB green value.

listBackBlue — List background RGB blue value.

Example

The following example will tell PrintList Pro to print the third column using a color scheme standard for OSX:
PL_SetColBackRGBColor (xArea;3;237;254;243;237;254;243)

Commands

Q.

Configuration Commands

PL_SetRowStyle

(areaRef:L; rowNumber:L; styleNum:L; fontName:T; fontSize:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= rowNumber longint Number of row.

— styleNum longint Style of the font.

- fontName text Name of the font.

- fontSize longint Size of the font.

PL_SetRowsStyle is used to set the style and font for a particular row. It will override the style and font settings for all columns in
that row. The size settings of each column will still apply.

Any subsequent sorting using PL_SetSort will cause the row style setting to be moved with the arrays. This will keep the style
setting “in sync” with the original row.

Keep in mind that any settings applied to a row will be moved with that row’s data if the data is later sorted using PL_SetSort. If you
do not want the row’s settings to move, call PL_SetSort before applying the row settings.

rowNumber — The row for which to set the style. Use a value of zero (0) to apply the parameters to all rows.

styleNum — This parameter is used to set the style for the row. Use the Style constants, which can be combined.

Note: if bold or italic styles are set, but not installed for the font, PrintList Pro will print regular (plain) characters.

If a row style has been previously set, it may be removed by setting styleNum to -1. This may also be applied to all rows by passing
a zero (0) for the rowNumber. This will have no effect on rows that have not been previously set.

The row style may be left unchanged by setting styleNum to 256.

fontName — This parameter specifies the font for a row. The row font may be left unchanged by setting fontName to the empty
string (""). If the font specified is not found, it will be treated as an empty string and ignored.

fontSize — This specifies the font size for a row. The row font size may be left unchanged by setting fontSize to 0.

Examples
PL_SetRowStyle(eNames;10;2;"";0) //set row 10 to be italic - no change in font size
PL_SetRowStyle(eNames;0;1;"Helvetica";14) //set all rows to be bold, Helvetica 14
PL_SetRowsStyle(elist;12;3;"Times";0) //set the 12th row to print the Times font in bold italic style

Commands

Configuration Commands

PL_SetRowColor

(areaRef:L; rowNumber:L; plpRowForeColor:T, 4dRowForeColor:L; plpRowBackColor:T; 4dRowBackColor:L)

|51

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.

= rowNumber longint Number of row.

- plpRowForeColor text Row foreground color from PrintList Pro’s palette.
— 4dRowForeColor longint Row foreground color from 4D’s palette.

- plpRowBackColor text Row background color from PrintList Pro’s palette.
— 4dRowBackColor longint Row background color from 4D’s palette.

PL_SetRowColor is used to specify the foreground and background colors for a row. It will override the foreground and background
color settings for all columns in that row.

Any subsequent sorting using PL_SetSort will cause the row color setting to be moved with the arrays. This will keep the color
setting “in sync” with the original row.

Keep in mind that any settings applied to a row will be moved with that row’s data if the data is later sorted using PL_SetSort. If you
do not want the row’s settings to move, call PL_SetSort before applying the row settings.

rowNumber — The row for which to set the foreground color. Use a value of zero (0) to apply the parameters to all rows.

plpRowForeColor — Name of the color in PrintList Pro’s palette. This will be the foreground color for the row. If the name is not in
PrintList Pro’s palette or it is a null string, then 4dRowForeColor will be used.

4dRowForeColor — 1 to 256. Foreground color number for the row (from 4D’s palette). The row foreground color may be left
unchanged by setting plpRowForeColor to the empty string ("), and 4dRowForeColor to 0.

If a row color has been previously set, it may be removed by setting plpRowForeColor to an empty string (""), and 4dRowForeColor
to -1. This may also be applied to all rows by passing a zero (0) for the rowNumber. This will have no effect on rows that have not
been previously set.

plpRowBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the row. If the name is not
in PrintList Pro’s palette or it is the empty string ("), then 4dRowBackColor will be used.

4dRowBackColor —1 to 256. Background color number for the row (from 4D’s palette). The row background color may be left
unchanged by setting plpRowBackColor to the empty string ("), and 4dRowBackColor to 0.

If a row background color has been previously set, it may be removed by setting plpRowBackColor to the empty string (""), and
4dRowBackColor to -1. This may also be applied to all rows by passing a zero (0) for the rowNumber. This will have no effect on
rows that have not been previously set.

Examples
PL_SetRowColor(eNames;10;"Blue";0;"Light gray";0) //set row 10 to foreground blue, background light gray
PL_SetRowColor(eNames;0;"Blue";0;"Yellow";0) //set all rows to blue foreground, yellow background
PL_SetRowColor(eNames;0;"";-1;"";-1) //reset all row colors to use the column color settings
PL_SetRowColor(elList;10;"Blue";0;"Light Gray";0)
/I set the 10th row to print a foreground color of blue and background color of light gray
PL_SetRowColor(elList;12;"Green";0;"";0)

/I set the 12th row to print a foreground color of green and the current background color

Commands

Configuration Commands

|52

PL _SetRowRGBColor

(areaRef:L; rowNumber:L; rowForeRed:L; rowForeGreen:L; rowForeBlue:L; rowBackRed:L; rowBackGreen:L; rowBackBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= rowNumber longint Row number.

= rowForeRed longint Foreground red.

— rowForeGreen longint Foreground green.

- rowForeBlue longint Foreground blue.

- rowBackRed longint Background red.

= rowBackGreen longint Background green.

- rowBackBlue longint Background blue.

PL_SetRowRGBColor provides the ability to set the foreground and background colors for an individual row using standard RGB

colors.

This routine is similar to PL_SetRowColor, except that it uses RGB color values.

rowForeRed — Foreground RGB red value.

rowForeGreen — Foreground RGB green value.

rowForeBlue — Foreground RGB blue value.

rowBackRed — Background RGB red value.

rowBackGreen — Background RGB green value.

rowBackBlue — Background RGB blue value.

Example

The following example will tell PrintList Pro to print the third row using a color scheme standard for MacOS X:
PL_SetRowRGBColor (xArea;3;237;0;243;0;254;0)

Commands

Q.

Configuration Commands

PL_SetDividers

(areaRef:L; colDividerWidth:F; colDividerPattern:T; plpColDividerColor:T; 4dColDividerColor:L; rowDividerWidth:F;
rowDividerPattern:T, plpRowDividerColor:T; 4dRowDividerColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= colDividerWidth real Width of the column divider line.

= colDividerPattern text Pattern of the column divider.

- plpColDividerColor text Color from PrintList Pro’s palette for the column divider.
— 4dColDividerColor longint Color from 4D’s palette for the column divider.

= rowDividerWidth real Width of the row divider line.

= rowDividerPattern text Pattern of the row divider.

— plpRowDividerColor text Color from PrintList Pro’s palette for the row divider.

— 4dRowDividerColor longint Color from 4D’s palette for the row divider.

PL_SetDividers is used to set the pattern (transparency ratio) and color of the column and row dividers.

See the Patterns item in the Compatibility Notes.

colDividerWidth — 0 to 1. This option controls the line width of the column dividers. A value of 0.25 pixel should be used for
hairlines. A value of 0 means that no dividers will be printed.

colDividerPattern — Name of the pattern (transparency ratio) for the column divider. If a null string is used then no column divider
will be printed.

plpColDividerColor — Name of the color in PrintList Pro’s palette. This will be the color for the column divider. If the name is not
in PrintList Pro’s palette or it is a null string, then 4dColDividerColor will be used.

4dColDividerColor — 1 to 256. The color at this position in 4D’s palette will be used for the column divider.

rowDividerWidth — 0 to 1. This option controls the line width of the row dividers. A value of 0.25 pixel should be used for hairlines.
A value of 0 means that no dividers will be printed.

rowDividerPattern — Name of the pattern (transparency ratio) for the row divider. If a null string is used then no row divider will
be printed.

plpRowDividerColor — Name of the color in PrintList Pro’s palette for the row divider. If the name is not in PrintList Pro’s palette
or it is a null string, then 4dRowDividerColor will be used.

4dRowDividerColor — 1 to 256. The color at this position in 4D’s palette will be used for the row divider.

If neither PL_SetDividers nor PL_SetRGBDividers are called, then no column or row dividers will be printed.

Examples
/I Print solid gray column dividers and no row dividers
PL_SetDividers (eNames;1;"Black";"Gray";0;0;"";"";0)
/I Print column and row hairline dividers in a gray pattern
PL_SetDividers (eNames;0.25;"Gray";"Black";0;0.25;"Gray";"Black";0)

Commands

Q.

Configuration Commands

PL_SetRGBDividers

(areaRef:L; colDividerWidth:F; colDividerPattern:T; colDividerRed:L; colDividerGreen:L; colDividerBlue:L; rowDividerWidth:F;
rowDividerPattern:T, rowDividerRed:L; rowDividerGreen:L; rowDividerBlue:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= colDividerWidth real Width of the column divider line.
= colDividerPattern text Column divider pattern string.
= colDividerRed longint Column divider — Red.

= colDividerGreen longint Column divider — Green.

= colDividerBlue longint Column divider — Blue.

= rowDividerWidth real Width of the row divider line.

= rowDividerPattern text Row divider pattern string.

- rowDividerRed longint Row divider — Red.

= rowDividerGreen longint Row divider — Green.

- rowDividerBlue longint Row divider — Blue.

PL_SetRGBDividers functions the same as the PL_SetDividers routine, except that the column and row divider colors use standard
RGB values.

colDividerWidth — 0 to 1. This option controls the line width of the column dividers. A value of 0.25 pixel should be used for
hairlines. A value of 0 means that no dividers will be printed.

colDividerPattern — Text, name of the pattern (transparency ratio) for the column divider. If a null string is used then no column
divider will be printed.

colDividerRed — Column divider RGB red value.
colDividerGreen — Column divider RGB green value.
colDividerBlue — Column divider RGB blue value.

rowDividerWidth — 0 to 1. This option controls the line width of the row dividers. A value of 0.25 pixel should be used for hairlines.
A value of 0 means that no dividers will be printed.

rowDividerPattern — Text, name of the pattern (transparency ratio) for the row divider. If a null string is used then no row divider
will be printed.

rowDividerRed — Row divider RGB red value.
rowDividerGreen — Row divider RGB green value.
rowDividerBlue — Row divider RGB blue value.

If neither PL_SetDividers nor PL_SetRGBDividers are called, then no column or row dividers will be printed.

Example

The following example will set the column/row dividers using the PL_SetRGBDividers routine:
/I Print column and row dividers in a hairline gray pattern
PL_SetRGBDividers(eNames;0.25;"Gray";209; 209; 209;0.25;"Gray"; 209; 209; 209)

Commands

Q.

Configuration Commands

PL_SetFrame

(areaRef:L; frameLineWidth:F; frameLinePattern:T, plpFrameLineColor:T; 4dFrameLineColor:L; headerLineWidth:F;
headerLinePattern:T; plpHeaderLineColor:T; 4dHeaderLineColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= frameLineWidth real Width of the frame line.

= frameLinePattern text Pattern of the frame line.

- plpFrameLineColor text Color from PrintList Pro’s palette for the frame line.

— 4dFrameLineColor longint Color from 4D’s palette for the frame line.

= headerLineWidth real Width of the header separator.

= headerLinePattern text Pattern of the header separator.

— plpHeaderLineColor text Color from PrintList Pro’s palette for the header separator.
= 4dHeaderLineColor longint Color from 4D’s palette for the header separator.

PL_SetFrame is used to set the pattern (transparency ratio) and color of the frame and header separator lines.

See the Patterns item in the Compatibility Notes.

frameLineWidth — 0 to 1. This option controls the line width of the frame. A value of 0.25 pixel should be used for hairlines. A value
of 0 means that no frame will be printed.

frameLinePattern — Name of the pattern (transparency ratio) for the frame. If a null string is used then no frame will be printed.

plpFrameLineColor — Name of the color in PrintList Pro’s palette. This will be the color for the frame. If the name is not in PrintList
Pro’s palette or it is a null string, then 4dFrameLineColor will be used.

4dFrameLineColor — 1 to 256. The color at this position in 4D’s palette will be used for the frame.

headerLineWidth — 0 to 1. This option controls the line width of the header separator. A value of 0.25 pixel should be used for
hairlines. A value of 0 means that no header separator will be printed.

headerLinePattern — Name of the pattern (transparency ratio) for the header separator. If a null string is used then no header
separator will be printed.

plpHeaderLineColor — Name of the color in PrintList Pro’s palette for the header separator. If the name is not in PrintList Pro’s
palette or it is a null string, then 4dHeaderLineColor will be used.

4dHeaderLineColor — 1 to 256. The color at this position in 4D’s palette will be used for the header separator.

If neither PL_SetFrame nor PL_SetRGBFrame are called, then no frame or header separator line will be printed.

Examples
/I Print 1 pixel wide, solid gray header separator and no frame
PL_SetFrame (eNames;0;"";"";0;1;"Black";"Gray";0)
/[Print hairline, solid black frame and header separator line
PL_SetFrame (eNames;0.25;"Black";"Black";0;0.25;"Black";"Black";0)

Commands

Configuration Commands

|56

PL_SetRGBFrame

(areaRef:L; frameLineWidth:F; frameLinePattern:T, frameLineRed:L; frameLineGreen:L; frameLineBlue:L; headerLineWidth:F;
headerLinePattern:T, headerLineRed:L; headerLineGreen:L; headerLineBlue:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= frameLineWidth real Width of the frame line.

= frameLinePattern text Pattern of the frame line.

- frameLineRed longint Frame line — Red.

- frameLineGreen longint Frame line — Green.

- frameLineBlue longint Frame line — Blue.

= headerLineWidth real Width of the header separator.
= headerLinePattern text Pattern of the header separator.
= headerLineRed longint Header separator — Red.

= headerLineGreen longint Header separator — Green.

= headerLineBlue longint Header separator — Blue.

PL_SetRGBFrame functions the same as the PL_SetFrame routine, except that the frame and header separator colors use

standard RGB values.

frameLineWidth — O to 1. This option controls the line width of the frame. A value of 0.25 pixel should be used for hairlines. A value

of 0 means that no frame will be printed.

frameLinePattern — Name of the pattern (transparency ratio) for the frame. If a null string is used then no frame will be printed.

frameLineRed — Frame line RGB red value. frameLineGreen — Frame line RGB green value. frameLineBlue — Frame line RGB

blue value.

headerLineWidth — 0 to 1. This option controls the line width of the header separator. A value of 0.25 pixel should be used for
hairlines. A value of 0 means that no header separator will be printed.

headerLinePattern — Name of the pattern (transparency ratio) for the header separator. If a null string is used then no header

separator will be printed.

headerLineRed — Header separator RGB red value.

headerLineGreen — Header separator RGB green value.

headerLineBlue — Header separator RGB blue value.

If neither PL_SetFrame nor PL_SetRGBFrame are called, then no frame or header separator line will be printed.

Example

The following example sets the frame and header separator line using PL_SetRGBFrame:

/I Print frame and header separator line in a hairline gray pattern

PL_SetRGBFrame(eNames;0.25;"Gray";209; 209; 209;0.25;"Gray"; 209; 209; 209)

Commands

Configuration Commands

PL_SetHeight

(areaRef:L; numHeaderLines:L; headerHeightPad:L; numRowLines:L; rowHeightPad:L; minimumHeight:L)

|57

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= numHeaderLines longint Number of text lines in the header.

— headerHeightPad longint Extra height for the header.

= numRowLines longint Number of text lines in each row.

= rowHeightPad longint Extra height for each row.

= minimumHeight longint Minimum pixel height remaining on the page.

PL_SetHeight is used to set the number of lines of text along with additional height padding in the header and in the rows. Only
text columns can wrap to more than one line.

If numRowLines is set to 2 or more, text elements will be able to wrap into the number of lines specified for each row. Note that all
rows will be given the same number of lines regardless of the actual number of lines used by a specific text element.

Additional padding may be set using rowHeightPad to allow more space between rows. Text will be centered vertically in the
header or row. Note that the padding applies to the entire row and not on a line by line basis within the row.

numHeaderLines — The number of lines in the header. Default is 1.
headerHeightPad — The extra height, in pixels, to give to the header. Default is 2.

numRowLines — The number of lines to give to each row. A value greater than 0 means that the height of each row is the same.
The fixed height will either be a function of the number of text lines specified or the height of the largest picture in a picture array if
so configured (refer to PL_SetFormat). A value of zero means that the height of each row is to be calculated automatically based
on the data that is to be printed. PrintList Pro examines the elements of all text and picture arrays to determine the height of each
row. Default is 1.

rowHeightPad — The extra height, in pixels, to give to each row. Default is 0.

minimumHeight — The minimum remaining available height, in pixels, for the PrintList Pro area to print on the page. For example,
if there are several PrintList Pro areas on one form, and you want to make sure that at least two rows are printed on one page for
the area specified by areaRef, and the row height is 12 points, you can set this parameter to 24. PrintList Pro will test if it has 24
pixels (two rows) left available on the page before printing the area. If not, it will proceed onto the following page. You should specify
at least the height of one row in this parameter.

Examples
PL_SetHeight(elist;1;4;1;2) //pad the header by 4 pixels and the rows by 2
PL_SetHeight(elist;2;5;2;0) //set header lines to 2, pad to 5 pixels, set row lines to 2, no padding
PL_SetHeight (elList;1;4;1;2;12) //check that 12 pixels (one row height here) are available before printing

Commands

Q.

Configuration Commands

PL SetSort

(areaRef:L; column1:L; ...; columnN:L)
Parameter Type Description
= areaRef longint Reference of PrintList Pro object on layout.
= column1; ...; columnN longint Column(s) to perform sort upon.

PL_SetSort is used to perform a multi-level sort.
column — These parameters specify the columns to use for the sort criteria.

A column greater than 0 causes an ascending sort to be performed upon that column, while a column less than 0 causes a
descending sort to be performed upon that column.

If a column is O, then all successive columns will be ignored.

If the arrays are already sorted, use PL_SetBrkOrder instead to communicate the sort order to PrintList Pro.

Examples
PL_SetSort(eNames;3;4;7) //sort on columns 3, 4, and 7 (all ascending)
PL_SetSort(eContacts;-1;3;-2) //sort on columns 1 (descending), 3 (ascending), and 2 (descending)

PL_SetColOpts

(areaRef:L; hideLastColumns:L; hideDetailArea:L; drawingEngine:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.

— hideLastColumns longint Number of columns from the right to hide.

= hideDetailArea longint Hide the list and just show the breaks.

= drawingEngine longint Drawing engine (ignored on Mac): GDI or GDI+.

PL_SetColOpts is used to hide columns from being printed and to hide the entire detail area to show just break level information.

hideLastColumns — This parameter specifies the number of arrays from the right to not print. This parameter is useful for keeping
many arrays “in sync” when sorting, but only a subset are to be printed. Default is 0.

hideDetailArea — 0 or 1:

Value Mode
0 Print the array values in the list (default)
1 Do not print the array values in the list

This is useful for printing a summary of break level information without printing the actual list

drawingEngine (ignored on Mac):
m GDI: better rendering, no transparency, no horizontal scaling, limited text rotation features

m GDI+: allows the three features above, but may affect precise rendering on Windows

Commands

Configuration Commands

This parameter is only meaningful on Windows. The two possible values are:

|59

Value Mode

0 Use GDI+ (default)

1 Change the engine used for printing on Windows to GDI
Examples

PL_SetColOpts (elList;2;0) //hide the last two columns
PL_SetColOpts (elList;0;1;1) //hide the detail area, show only the breaks, use GDI on Windows

PL_SetCellStyle

(areaRef:L; firstCellCol:L; firstCellRow:L; lastCellCol:L; lastCellRow:L; cellArray:Y; styleNum:L; fontName:T, fontSize:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= firstCellCol longint First cell column.

= firstCellRow longint First cell row.

= lastCellCol longint Last cell column.

= lastCellRow longint Last cell row.

= cellArray array Discontiguous cells (two-dimensional longint array).
= styleNum longint Style of the font.

- fontName text Name of the font.

- fontSize longint Size of the font.

PL_SetCellStyle is used to set the font and/or style of a specific cell, range of cells, or list of cells.

To specify a single cell: if firstCellCol and firstCellRow are greater than 0 and lastCellCol or lastCellRow are less than or equal
to 0 then only [firstCellCol, firstCellRow] will be set.

To specify a range of cells: if firstCellCol and firstCellRow are greater than 0 and lastCellCol and lastCellRow are greater than
0 then the range of cells from [firstCellCol, firstCellRow] to [lastCellCol, lastCellRow] will be set.

To specify discontiguous cells: if firstCellCol or firstCellRow are less than or equal to 0 then the cells in cellArray will be set.

cellArray — Two-dimensional long integer array. The first dimension must be two. The first array is for the column indices and the
second array is for the row indices. The second dimension must be the same as the number of cells that are to be selected. See

the following illustration:

cellArray
KN ENEN
vy v
0 0
Cell 1 1 1
Cell 2 2 2
:
1
1
Celln n n

Commands

Q.

Configuration Commands

styleNum —This parameter is used to set the style for the specified cells. Use the Style constants, which can be combined.

Note: if bold or italic styles are set, but not installed for the font, PrintList Pro will print regular (plain) characters.

If a cell style has been previously set, the style may be removed by setting styleNum to -1. The cell style may be left unchanged
by setting styleNum to 256.

fontName — This specifies the font for a cell. The cell font may be left unchanged by setting fontName to the empty string (""). If
the specified font is not found, it will be treated as an empty string and ignored.

fontSize — This specifies the font size for a cell. The cell font size may be left unchanged by setting fontSize to 0.

Keep in mind that any settings applied to a cell will be moved with that cell’s data if the data is later sorted using PL_SetSort. If you
do not want the cell’s settings to move, call PL_SetSort before applying the cell settings.

Example
ARRAY LONGINT(aCellSet;2;4)
/I Set cell at column 1, row 3 to bold Helvetica - no change in font size
PL_SetCellStyle (eArea;1;3;0;0;aCellSet;1;"Helvetica";0)
/] Set cells from column 2, row 2 to column 5, row 5 to font size 14, no change in style and font
PL_SetCellStyle (eArea;2;2;5;5;aCellSet;256;"";14)
/I Set the cells in aCellSet to Times
aCellSet{1}1}:=1 //column 1, row 1
aCellSet{2}{1}:=1
aCellSet{1K2}:=1 //column 1, row 2
aCellSet{2}{2}:=2
aCellSet{1K3}:=2 //column 2, row 5
aCellSet{2}{3}:=5
aCellSet{1K4}:=2 //column 2, row 6
aCellSet{2}{4}:=6
PL_SetCellStyle (eArea;0;0;0;0;aCellSet;256;"Times";0)

Commands

Configuration Commands

|61

PL_SetCellColor

(areaRef:L; firstCellCol:L; firstCellRow:L; lastCellCol:L; lastCellRow:L; cellArray:Y; plpForeColor:T; 4dForeColor:L;
plpBackColor:T; 4dBackColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= firstCellCol longint First cell column.

= firstCellRow longint First cell row.

- lastCellCol longint Last cell column.

- |astCellRow longint Last cell row.

= cellArray array Discontiguous cells (two-dimensional longint array).
- plpForeColor text Foreground color from PrintList Pro’s palette.
— 4dForeColor longint Foreground color from 4D’s palette.

- plpBackColor text Background color from PrintList Pro’s palette.
— 4dBackColor longint Background color from 4D’s palette.

PL_SetCellColor is used to set the foreground color and/or background color of a specific cell, range of cells, or list of cells.

To specify a single cell: if firstCellCol and firstCellRow are greater than 0 and lastCellCol or lastCellRow are less than or equal
to 0 then only [firstCellCol, firstCellRow] will be set.

To specify a range of cells: if firstCellCol and firstCellRow are greater than 0 and lastCellCol and lastCellRow are greater than 0
then the range of cells from [firstCellCol, firstCellRow] to [lastCellCol, lastCellRow] will be set.

To specify discontiguous cells: if firstCellCol or firstCellRow are less than or equal to 0 then the cells in cellArray will be set.

cellArray — Two-dimensional long integer array. The first dimension must be two. The first array is for the column indices and the
second array is for the row indices. The second dimension must be the same as the number of cells that are to be selected. See
the following illustration.

plpForeColor — Name of the color in PrintList Pro’s palette. This will be the foreground color for the cell. If the name is not in
PrintList Pro’s palette or it is the empty string (""), then 4dForeColor will be used.

4dForeColor — 1 to 256. Foreground color number for the cell (from 4D’s palette). If a cell foreground color has been previously
set, it may be removed by setting plpForeColor to the empty string ("), and 4dForeColor to 1. The cell foreground color may be left
unchanged by setting plpForeColor to the empty string ("), and 4dForeColor to 0.

plpBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the cell. If the name is not in
PrintList Pro’s palette or it is the empty string (""), then 4dBackColor will be used.

4dBackColor — 1 to 256. Background color number for the cell (from 4D’s palette). If a cell background color has been previously
set, it may be removed by setting plpBackColor to the empty string ("), and 4dBackColor to 1. The cell background color may be left
unchanged by setting plpBackColor to the empty string ("), and 4dBackColor to 0.

Keep in mind that any settings applied to a cell will be moved with that cell’s data if the data is later sorted using PL_SetSort. If you
do not want the cell’s settings to move, call PL_SetSort before applying the cell settings.

Commands

Configuration Commands

Examples
ARRAY LONGINT(aCellArray;2;0) //MUST initialize a two-dimensional long integer array
/I Set the foreground color of the cell at column 1, row 3 to blue
PL_SetCellColor (elList;1;3;0;0;aCellArray;"blue";0;"";0)
/I Set background color of cells from column 2, row 2 to column 5, row 5 to green
PL_SetCellColor (elList;2;2;5;5;aCellArray;"";0;"Green";0)
/I Set all negative values in the third column, a real array, to have a foreground color of red
For($i;1;Size of array(aRevenue)) //check each element in the array
If(aRevenue{$i}<0) //is the value in this element negative?
PL_SetCellColor(elist;3;$i;0;0;aCellArray;"Red";0;"";0) //if so, then print it in red
End if
End for

|62

PL_SetCellRGBColor

(areaRef:L; firstCellCol:L; firstCellRow:L; lastCellCol:L; lastCellRow:L; cellArray:Y; cellForeRed:L; cellForeGreen:L;
cellForeBlue:L; cellBackRed:L; cellBackGreen:L; cellBackBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= firstCellCol longint First cell column.

= firstCellRow longint First cell row.

= lastCellCol longint Last cell column.

= lastCellRow longint Last cell row.

- cellArray array Discontiguous cells (two-dimensional longint array).
= cellForeRed longint Foreground red.

= cellForeGreen longint Foreground green.

= cellForeBlue longint Foreground blue.

= cellBackRed longint Background red.

= cellBackGreen longint Background green.

= cellBackBlue longint Background blue.

PL_SetCellRGBColor is used to set the foreground and/or background color of a specific cell, range of cells, or list of cells.

This routine works in the same manner as PL_SetCellColor, except it allows you to specify the colors using standard RGB values.

cellForeRed — Foreground RGB red value.
cellForeGreen — Foreground RGB green value.
cellForeBlue — Foreground RGB blue value.
cellBackRed — Background RGB red value.

cellBackGreen — Background RGB green value.

cellBackBlue — Background RGB blue value.

Commands

a|63

Configuration Commands

PL_SetCelllcon

(areaRef:L; cellColumn:L; cellRow:L; pictRef:P; iconAlignment:L; horPosition:L; vertPosition:L; offsetOrWidth:L; scaling:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

= cellColumn longint Column at which to set the icon.

= cellRow longint Row at which to set the icon (0 to set the header).

= iconRef longint Reference of the icon or picture to use.

= iconAlignment longint Position of icon.

= horPosition longint Horizontal position.

= vertPosition longint Vertical position.

= offsetOrWidth longint Pixel offset, or icon width depending on horPosition.
= scaling longint Scaling.

PL_SetCelllcon provides the ability to procedurally print icons in individual cells.

One or two icons may be used (left and right). You can customize the icon(s) using items from the 4D Picture Library (see details

below).

cellColumn — Cell column number.

cellRow — Cell row number (or 0 to set the header).

iconRef — Reference of the icon or picture to use from the Picture Library. To associate an icon to the cell, pass the reference
number of a picture from the Design environment Picture Library. Pass zero (0) if you do not want any icon for the cell.

See Header/Cell Icon Support for examples.

iconAlignment — Position of icon (each cell can contain up to two icons):

Value

Mode

0

Places icon on left of cell

1

Places icon on right of cell

horPosition — One the following options:

Value Mode

0 Default (left for left icon, right for right icon)
1 Align left

2 Align center

3 Align right

vertPosition — One the following options:

Value Mode

0 Default (top)
1 Align top left
2 Align center
3 Align bottom

Commands

Q.

Configuration Commands

offsetOrWidth — when horizontal alignment in horPosition is zero (default position : left for left icon, right for right icon), the
offsetOrWidth is the offset, i.e. the distance in pixels between the text and the icon (left or right):

ol
—

| +« offset = I

Text
|

| +« offset = I

Text!
|

horPosition =0

Otherwise the offsetOrWidth is the pixel width that the icon will use - the icon will be aligned in this space:

| ~ width =
| @
|

IText
|

Text |
|

~ width = |
S |
|

horPosition = 2 (centered)

scaling — One the following options:

Value Mode
0 Truncated
1 Scaled

The cell content (text) is printed into the space that is left once the icon is printed.

For example, if the column width is 100 pixels and you print a 15 pixel icon, the remaining width can be calculated as 100 minus
the padding (default horizontal indent is 3 for header and data rows on both sides = 6 points), minus the column divider if shown (1

point): 100 - 6 - 1 - 15 = 78 points where the text will be printed.

Example

The following example will print an icon in r3c2, using an item (ID 1717) from the 4D Picture Library:

$col:=2

$row:=3

$iconRef:=1717
$iconPos:=1 //right
$horPos:=0 //default
$verPos:=2 //align center
$offset:=5

$scaling:=0

PL_SetCelllcon (ePLOutput;$col;$row;$iconRef;$iconPos;$horPos;$verPos;$offset;$scaling)

Commands

Q.

Configuration Commands

PL_SetCellBorder

(areaRef:L; cellColumn:L; cellRow:L; borderLeft:L; borderTop:L; borderRight:L; borderBottom:L; offset:L; width:F; redColor:L;

greenColor:L; blueColor:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= cellColumn longint Column.

- cellRow longint Row.

= borderLeft longint Print left border.

- borderTop longint Print top border.

= borderRight longint Print right border.

= borderBottom longint Print bottom border.

= offset longint Offset from cell boundary in pixels.
- width real Width of line.

= redColor longint Red.

= greenColor longint Green.

= blueColor longint Blue.

PL_SetCellBorder provides the ability to set the border style and RGB color for a cell.

cellColumn — Column of cell where border will be applied.

cellRow — Row of cell where border will be applied.

borderLeft — Print left border.

borderTop — Print top border.

borderRight — Print right border.

borderBottom — Print bottom border.

offset — Offset from cell boundary in pixels. 0 if the border should be printed at cell boundary (default).

width — Width of line. This parameter is a real value, allowing fractional widths. See Demo mode dialog.

redColor — RGB red value used for the border.
greenColor — RGB green value used for the border.

blueColor — RGB blue value used for the border.

Commands

Q.

Configuration Commands

PL_SetCellFrame

(areaRef:L; firstCellCol:L; firstCellRow:L; lastCellCol:L; lastCellRow:L; offset:L; width:F; redLightColor:L; greenLightColor:L;
blueLightColor:L; redDarkColor:L; greenDarkColor:L; blueDarkColor:L; clearAliBorders:L)

Parameter Type Description

- areaRef longint Reference of PrintList Pro object on layout.
= firstCellCol longint First cell column.

= firstCellRow longint First cell row.

= lastCellCol longint Last cell column.

- |astCellRow longint Last cell row.

- offset longint Offset from cell boundary in pixels.
= width real Width of line.

= redLightColor longint Red (light color).

— greenLightColor longint Green (light color).

- blueLightColor longint Blue (light color).

— redDarkColor longint Red (dark color).

— greenDarkColor longint Green (dark color).

- blueDarkColor longint Blue (dark color).

= clearAllBorders longint Clear all borders within the frame.

PL_SetCellFrame prints a frame around a range of cells. It uses RGB colors: light color for both left and top lines, dark color for

both right and bottom line.

The range of cells from [firstCellCol, firstCellRow] to [lastCellCol, lastCellRow] will be set.

offset — Offset from cell boundaries in pixels. 0 if the frame should be printed at cell boundaries (default).
width — Width of line. This parameter is a real value, allowing fractional widths. See Hairline Line Width.

redLightColor, greenLightColor, blueLightColor — RGB values used for both left and top lines colors.

redDarkColor, greenDarkColor, blueDarkColor — RGB values used for both right and bottom lines colors.

clearAllBorders — It this parameter value is 1, then all cells inside the frame will have their borders removed.

Commands

Q.

Configuration Commands

PL_SetPageProc

(areaRef:L; callbackMethod:T)

Parameter Type Description
- areaRef longint Reference of PrintList Pro object on layout.
- callbackMethod text Name of the page callback project method.

PL_SetPageProc is used to specify a 4D project method to be called at the end of PrintList Pro’s processing on every page. Keep
in mind that a PrintList Pro page is not necessarily equivalent to a physical page.

It is possible to have several occurrences of a PrintList Pro object for a single page. Each occurrence will invoke the callback
method at the end of its page. See End of Page Callback.

callbackMethod — The name of the callback method that is called at the end of every PrintList Pro page.
You must use the following declaration in your callback method:

C_LONGINT ($1:$2)

PrintList Pro will pass the method specified by callbackMethod two parameters: the first indicates which PrintList Pro area is calling
the method, and the second specifies the last row printed on that page.

Example
PL_SetPageProc (eList;"MyCallback")

PL_GetVersion

- version:T
Parameter Type Description
~ version text Version of the PrintList Pro plugin.

PL_GetVersion returns the version number of the currently used PrintList Pro plugin.

Note that getting this property will not trigger the registration dialog if PrintList Pro is not registered (allows to check version before
registering)

Example
C_TEXT($version)

$version:=PL_GetVersion

Commands

Q.

Configuration Commands

PL Load

(areaRef:L; XML:T) = result:L

Parameter Type Description

- areaRef longint Reference of PrintList Pro object on layout.

= XML text XML data that was saved using the PL_Save command.
~ result longint 0 if the XML was loaded OK; 1 if not.

PL_Load initializes an area from an XML (using UTF-8) text that was saved to a text field or variable using the PL_Save command
or AL_Save (from ArealList Pro).

PL_Load can be used without any other command use (e.g. no defined columns - they will be read from the XML).

Do not call PL_Load more than once for the same area: it is not intended for that and many properties are not reinitialized to
defaults.

Example

This example initializes a PrintList Pro area using settings that were saved into a field in the database.
Serr:=PL_Load (area;[Settings]PLP_template)

PL_Save

(areaRef:L; XML:T) = result:L

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.

= XML text A variable or field to save an area’s XML settings into.
~ result longint 0 if the XML was loaded OK; 2 if not.

PL_Save saves an area’s settings as XML (using UTF-8) in a text variable or field.

Use PL_Save after configuring the area but before printing. PrintList Pro modifies properties during printing - you would not get the
original settings.

Example

Save a PrintList Pro area’s settings into a field in the database.
C_TEXT($Settings)
$err:=PL_Save (area;$Settings)
[Settings]PLP_template:=$Settings

Commands

http://www.e-node.net/alp

Q.

Using the Callback Methods

Using the Callback Methods

A “callback” is a 4D project method which is executed by a plug-in. PrintList Pro lets you make use of callbacks when printing a
PrintList Pro object.

Summary

PrintList Pro provides five different callback methods:

m when the end of a printed page is reached (callbackMethod parameter of PL_SetPageProc)

m custom calculations in a break (functionName parameter of PL_SetBrkFunc)

m custom calculations in a break header (functionName parameter of PL_SetBkHFunc)

m calculated columns (calcCallback parameter of PL_SetCalcCall) in field display or array display mode

m computed breaks, with or without printing (callbackMethodName parameter of PL_ProcessArrays)

Warnings

[%’F‘]allback methods may use most 4D commands, but should not call any PrintList Pro commands or any 4D commands that affect
e arrays.

Note: this limitation does not apply to computed break callbacks.

m Callback methods should preserve the current selection of the printing layout’s file by saving and restoring the selection if
necessary.

m All callbacks receive parameters, which need to be declared as documented below.

End of Page Callback

PrintList Pro makes use of a callback method to inform you when the end of a printed page is reached. This enables you to perform
any necessary processing associated with the end of the page, for example, changing information printed in the footer area of that
page or the header area of the next page.

Use PL_SetPageProc to specify the 4D project method PrintList Pro is to call. PrintList Pro will pass the method specified by
callbackMethod two parameters: the first indicates which PrintList Pro area is calling the method, and the second specifies the
last row printed on that page.

You must use the following declaration in your callback method:
C_LONGINT ($1;$2)

Summary - Warnings - End of Page Callback

Q.

Using the Callback Methods

Custom Calculations in a Break

PL_SetBrkFunc is used to specify the callback function for use with custom calculations. The callback function functionName is
called whenever PrintList Pro encounters the string “\Function” within the text that is to be printed for a specific break level.

Refer to PL_SetBrkText for details on how to embed the custom calculation string.
PrintList Pro passes information needed for the custom calculation to the callback function.

You must use the following declarations in your callback method:
C_LONGINT ($1;$2) //break level, column
C_TEXT ($3) //column format
C_LONGINT($4;$5) //start row, end row
C_TEXT ($0) //custom calculation result to print

Custom Calculations in a Break Header

A break header will print information just prior to the group of related values.

PL_SetBkHFunc is used to specify the name of the break header callback function. This function will be called for any break header
that contains a break function.

Refer to PL_SetBrkText and PL_SetBkHText to determine how to set a break function for a break level.
The syntax of this command is identical to that of PL_SetBrkFunc.

The callback function functionName is called whenever PrintList Pro encounters the string “\Function” within the text that is to be
printed for a specific break level. PrintList Pro passes information needed for the custom calculation to the callback function.
You must use the following declarations in your callback method:

C_LONGINT ($1;$2) //break level, column

C_TEXT ($3) //column format

C_LONGINT($4;$5) //start row, end row

C_TEXT ($0) //custom calculation result to print

Custom Calculations in a Break - Custom Calculations in a Break Header

Q.

Using the Callback Methods

Calculated Column Gallback

A 4D callback may be attached to a specific column. When information is needed for this column, PrintList Pro will execute the
callback to allow you to fill the column with data.

This allows the printing of data calculated from one or more fields or arrays as well as any ad hoc data that is desired.

Parameter Type

$1 Reference of PrintList Pro object on layout

$2 Column number

$3 Type of data in this column (field type or array type)

$4 Pointer to temporary 4D array (field mode) or an existing sized array (array mode)
$5 First row for which to calculate cell

$6 Number of cells to calculate in column

The first three parameters are not absolutely necessary to determine how to fill the column. They are provided to give you more
flexibility in the implementation of the callback method.

m The first parameter is the area long integer reference. This gives you the ability to use this callback method for more than one
PrintList Pro object.

m The second parameter is the column number. This gives you the ability to use this callback method for many columns within a
PrintList Pro object.

m The third parameter is the type of data in the column (field type or array type).

The last three parameters are absolutely necessary.

m In field mode, the fourth parameter is a pointer to one of the temporary 4D Arrays used internally by PrintList Pro. This is where
you will load the data to be printed in the column. In array mode, this is a declared, fully sized 4D array (by you as the developer),
you have to fill the requested elements

m The fifth parameter is the number of the first cell that needs to be filled in the column. This is the same as the selected number
of the row that contains this cell.

m The sixth parameter is the number of cells (rows) to be filled in the column.

You must declare all six parameters ($1 to $6) in the calculated column callback. If any of these parameters are not declared, you
will get an error when compiling the database.

You must use the following declarations in your callback method:
C_LONGINT ($1;$2;$3;$5;$6)
C_POINTER (%4)

See Calculated Columns for details.

Calculated Column Callback

Q.

Using the Callback Methods

Computed Breaks

This powerful feature makes all break calculations available for subtotals or other calculated values in any break level, as well as
any individual row sub-selection from the top.

These values are returned by PrintList Pro without need for actual printing.

PL_ProcessArrays is used to specify the name of the computed break callback function. This function will be called for the break
levels and the columns specified by the breakArrays and dataArrays parameters.

In addition, the useDetail parameter allows calling the callback only on breaks, or for each individual row as well.

The Computed Break callback method receives three parameters: a handle needed to call PL_GetBreakValue, the current row
number and the current break level, or -1 if individual rows are set to call the callback with PL_ProcessArrays.

You must use the following declarations in your callback method:
C_LONGINT ($1) //handle to pass over to PL_GetBreakValue
C_LONGINT($2) //current row number
C_LONGINT ($3) //break level (or -1 for an individual row)

PL_GetBreakValue is called from the callback method to perform usual break level processing calculations such as sum,
minimum,etc. for the current break level (or individual row) and the specified column.

See Using Computed Breaks for details.

Computed Breaks

Q.

Field and Record Commands

Field and Record Gommands

PrintList Pro uses the SELECTION RANGE TO ARRAY command in 4D to get the records for printing.

Up to 32767 fields (columns) can be printed in a PrintList Pro object.

Using the Field Printing Gapability

Temporary Arrays

PrintList Pro internally uses interprocess 4D arrays to get the record data from 4D. These arrays do not have to be declared in 4D.

Arrays and Fields

Arrays and fields may not be printed together in the same PrintList Pro object. If arrays are printed in an object, then the field
commands will be ignored. Conversely, if fields are printed in an object, then the array commands will be ignored.

Printing 4D Fields

Fields from Related One Tables

Fields from a main table and from related one tables may be printed in the same PrintList Pro object. See the commands PL_SetFile
and PL_SetFields for further information about printing fields from related one tables.

Sorting

PrintList Pro uses 4D’s sorting routines when sorting fields.

When printing records, fields from a related one table can be included in a sort.

Time Data

Time data will be converted to a longint since this is how it is stored internally by 4D.

Using the Field Printing Capability - Printing 4D Fields

Q.

Field and Record Commands

Maximum Number of Records Printed

The maximum number of PrintList Pro records printed in a PrintList Pro object is only limited by 4D’s own limitations and available
memory.

Performance Issues When Printing Fields

When PrintList Pro prints fields, the automatic column sizing algorithm uses only the first 20 records (or less, if the selection
contains less than 20 records) in the selection. These records are always read regardless of whether the columns are automatically
or manually sized.

Therefore there is no performance penalty using the automatic column sizing algorithm when printing fields.

See Performance Issues with Formatting Commands for more information.

Commands

PL_SetFile

(areaRef:L; tableNum:L) = resultCode:L

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= tableNum longint Number of 4D table.

+~ resultCode longint Result code.

PL_SetFile tells PrintList Pro what table is the main table from which to print records.
This command is only necessary if the field to be printed in column one is not from the main table, but from a related one table.

PL_SetFile must be called before any fields have been set, otherwise it will be ignored. If this command is not called, then PrintList
Pro will use the table of the field printed in column one as the main table.

resultCode — The possible values are:

Constant Value Action

PL SetFile Passed 0 Reference of PrintList Pro object on layout

PL Not enough memory 5 Increase 4D’s RAM partition

PL Not a file 6 Check to make sure that the table represented by tableNum does exist

PL Wrong 4D version 10 (obsolete)

PL Arrays have been set 1 You've attempted to set fields or a table when arrays have already been set

PL Fields have been set 12 You've attempted to set arrays when fields have already been set
Example

$result:=PL_SetFile (eList;Table (->[People]))

Printing 4D Fields-Commands

Field and Record Commands

|75

PL_SetFields

(areaRef:L; tableNum:L; columnNumber:L; numFields:L; field1; ...; fieldN:L) = resultCode:L

Parameter Type Description

- areaRef longint Reference of PrintList Pro object on layout.
= tableNum longint Number of 4D table.

= columnNumber longint Column at which to set the first field.

= numFields longint Number of fields to set (up to 15).

- field1; ...; fieldN longint Number(s) of 4D field(s).

+~ resultCode longint Result code.

PL_SetFields tells PrintList Pro what fields to print. Up to fifteen fields can be set at a time. Any 4D field type can be used.

Fields from related one tables may also be printed (see PL_SetFile). A separate call to PL_SetFields must be made to set these
fields. To print a related one field, pass the table number of the related one table in the tableNum parameter.

This command is also used to print calculated columns. See Calculated Columns.

resultCode — The possible values are:

Constant Value Action

PL SetFile Passed 0 Reference of PrintList Pro object on layout

PL Not enough memory 5 Increase 4D’s RAM partition

PL Not a file 6 Check to make sure that the table represented by tableNum does exist

PL Not a field 7 The fieldNum passed is not a valid 4D field number

PL Wrong field type 8 The field passed cannot be used by PrintList because the field’s type is not supported
PL Maximum fields exceeded 9 32767 fields is the maximum

PL Wrong 4D version 10 (obsolete)

PL Arrays have been set 1 You've attempted to set fields or a table when arrays have already been set

Examples

/I Set up the eList PrintList Pro object with 5 Fields, all from the same Table
Serror:=PL_SetFields(eList;Table(->[People]);1;5;Field(->[People]First Name);Field (->[People]Last Name);
Field (->[People]Salary);Field (->[People]Arrival);Field (->[People]Male))

/I Set up the eList PrintList Pro object with 4 Fields, the third one from a related Table
$error:=PL_SetFields(elist;Table(->[People]);1;2;Field(->[People]First Name);Field(->[People]Last Name))
$error:=PL_SetFields(elist;Table(->[Companies]);3;1;Field(->[Companies]Company Name))

Serror: PL_SetFields(eList;Table(->[People]);4;1;Field(->[People]Salary))
/I Set up the eList PrintList Pro object with 4 Fields, the first one from a related Table

$Serror:=PL_SetFile(eList;Table(->[People])) //set the main Table since the Field to be set in column one
/lis not from the main Table, but from a related one Table

Serror:=PL_SetFields(eList;Table(->[Companies]);1;1;Field(->[Companies]Company Name))

Serror:=PL_SetFields(eList;Table(->[People]);2;3;Field(->[People]First Name);\
Field(->[People]Last Name); Field(->[People]Salary))

Commands

Q.

Calculated Columns

Galculated Golumns

PrintList Pro columns can be calculated “on the fly” to print the results of calculations performed in a callback method.

This feature is available for both field and array printing modes.

Setting a Calculated Column (field mode)

The PL_SetFields command is used both to set fields to be printed and to set up calculated columns.
m If the fieldNum parameter contains an integer greater than or equal to 1, the column will print the field represented by that number.

m If the fieldNum parameter contains an integer less than or equal to 0, the column will print calculated data. The absolute value
of fieldNum will determine the type of data to be printed in the column.

The following table shows the data types that may be printed in a calculated column in field mode:

Constant Value
Is Alpha Field

Is Real

Is Text

Is Picture

Is Date

Is Boolean

Is Integer

Is Longint

2o ol ~lw|IN|I~|O

N

Is Time

For example, to print a calculated column of type Real, pass Is Real (-1) in the fieldNum parameter.

Setting a Calculated Column (field mode)

Q.

Calculated Columns

Setting a Calculated Column (array mode)

The PL_SetCalcCall command is used to set up calculated columns in array mode.
To make a column calculated, create a regular array-based column and then use:
PL_SetCalcCall (area; column; methodName)
The callback parameters are expected to be declared as (area:L; column:L; type:L; ptr:W; first:L;count:L).

This callback method has the same parameters as a column callback in fields mode, but the array is fully sized (by you as
developer), you have to fill the requested elements.

The type is the actual array type, not a field type (e.g. Longint array instead of Is Longlnt)

The following table shows the data types that may be printed in a calculated column in array mode:

Constant Value
Real array 14
Integer array 15
Longint array 16
Date array 17
Text array 18
Picture array 19
String array 21
Boolean array 22

Setting the Callback Method

In both field mode and array mode, use the PL_SetCalcCall command to set the Calculated Column Callback for a column.

In field mode, PrintList Pro will dimension the temporary array before invoking the calculated column callback. There is no need to
do it in the callback itself.

In array mode, the arrays used to place the calculated values must be declared and sized just as the other displayed arrays.

Setting a Calculated Column (array mode)

Q.

Calculated Columns

Field mode example

The following is an example of a calculated callback method in field mode. It merely calculates an employee’s one year anniversary
by adding one year to their hire date (using the 4D Add to date function).

/I CalcColCallback
//'$1: Area reference (PrintList Pro longint reference) //$2: Column number
/1$3: Type of data in this column
/I $4: Pointer to temporary 4D array
/1'$5: First record for which to calculate cell
/1$6: Number of cells to calculate in column
/I Declare the parameters
C_LONGINT($1;$2;$3;$5;$6) //these must be declared
C_POINTER($4) //this must be declared
C_LONGINT ($i)
ARRAY DATE($aHireDate;0) //local array can be used since we only need it here for calculation
SELECTION RANGE TO ARRAY($5;$5+%6-1;[Employee]Hire Date;$aHireDate)
For ($i;1;$6)
$4->{$i}:= Add to date($aHireDate{$i};1;0;0)
End for

Array mode example

The following is an example of a calculated callback method in array mode, using the same simple calculation as above, but with
4D arrays being printed.

These arrays have been initially declared and included in the PrintList Pro area with the same command (either PL_SetArraysNam
or PL_AddColumn) for both non-calculated and calculated arrays:

/I Declare the arrays

ARRAY TEXT(aName;0)

ARRAY DATE(aHireDate;0) //not printed, but needed for calculation

SELECTION TO ARRAY([Employee]Name;aName;[Employee]Hire Date;aHireDate)

ARRAY DATE (aAnniversary;Size of array(aName)) //this is our calculated array - must be of same size!
/[Arrays to print

$error:= PL_AddColumn(eList;->aName;0) //no need to specify colum number

$error:= PL_AddColumn(eList;->aAnniversary;0)
/I Set calculated callback method for column 2

PL_SetCalcCall (eList;2;"CalcColCallbackArray”)

Setting a Calculated Column (array mode)

Q.

Calculated Columns

Now we use the callback as previously to populate the array on the fly:
/I CalcColCallbackArray
/1$1: Area reference (PrintList Pro longint reference) //$2: Column number
//'$3: Type of array in this column
/I $4: Pointer to the printed array
/1'$5: First row for which to calculate cell
//'$6: Number of cells to calculate in column
/I Declare the parameters
C_LONGINT($1;$2;$3;$5;%6) //these must be declared
C_POINTER($4) //this must be declared
C_LONGINT ($i)
For ($i;$5;$5+$6-1)
$4->{$i}:= Add to date(aHireDate{$i};1;0;0)
End for

Commands

PL_SetCalcGall

(areaRef:L; columnNumber:L; calcCallback:T)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.

= columnNumber longint Column number.

= calcCallback text 4D method called to fill row(s) of a calculated column.

PL_SetCalcCall is used to set a callback method for a calculated column.
columnNumber — This parameter specifies the column on which to attach the calcCallback method.

calcCallback — This method will be called whenever row(s) need to be filled in a calculated column. If this is an empty string then
no method will be called.

The first two parameters ($1 and $2) passed to this callback method are areaRef and columnNumber. Therefore, if desired, the
same callback can be used for more than one PrintList Pro object and for many columns in an object.

For information on how to write a calculated column callback, see the section Calculated Column Callback.

Example
/I Set calculated callback method for column 3
PL_SetCalcCall (eArea;3;"CalcColCallback”)

Setting a Calculated Column (array mode)-Commands

19

Break Level Processing

Break Level Processing

About PrintList Pro Break Level Processing

The PrintList Pro break level processing routines provide the functionality of 4D’s Quick Report capabilities, and much more.

You can choose to display a variety of information for any break level and any column within that break including: static text, Quick
Report calculations, custom calculations or break data insertion for each break.

Each piece of information can be shown in different fonts, sizes and styles as well as different colors. You can also control the
display of repeated values.

When Do Breaks Occur?

When a list is sorted, often some of the sorted array elements will have groups of identical values.

For example, if the membership of a club that consisted of members from many different countries was sorted by country, the
membership list would likely consist of many members that were from the same country. Because the list is sorted, all the members
from the same country would be grouped together in the list. A “break” would occur in the list anytime the group changes (the
country is different).

Multiple break levels occur when the list is sorted on multiple criteria. The number of any break level is determined by its position
in the sort order.

If the same membership list is sorted by country first and then by city, a break for break level one (country) would occur whenever
the country changes in the list, and a break for break level two (city) would occur whenever the city changes in the list.

When a break occurs for a certain level, every break level higher than it will occur as well. In the club example, break level 2 (city)
will always break whenever a break for break level 1 (country) occurs.

You may want to show leading or summary information for the groups of information within the list. In PrintList Pro, these areas are
called break headers and break footers respectively.

A break header will print information just prior to the group of related values while a break footer will print information immediately
after the group.

About PrintList Pro Break Level Processing-When Do Breaks Occur?

|80

Q.

Break Level Processing

The following is an illustration of the location of break headers and footers within a list:

Column Headers

Header, break-level 0

Header, break-level 1

Header, break-level 2

Rows

A break for

break-level 2
Footer, break-level 2 occurs

Header, break-level 2

Rows

Footer, break-level 2 A break for
Footer. break-level 1 break-level 1

ooter, break-leve ocours
Header, break-level 1

Header, break-level 2

Rows

Rows

FEg0ter, break-level 2

Footer, break-level 1

Footer, break-level 0 Break-level 0
occurs

When Do Breaks Occur?

Q.

Break Level Processing

Using PrintList Pro Break Level Processing

Any break level routine that accepts a column number requires that the column/array be set using PL_SetArraysNam or PL_AddColumn
prior to calling that routine.

PrintList Pro provides up to 15 break levels and a total line at the end of list. For any given list, the number of break levels can be
no greater than the number of sorted arrays.

PrintList Pro will only print a break for a break level that has been configured using PL_SetBrkText for break footers or
PL_SetBkHText for break headers.

A break level can be configured regardless if lower breaks have been configured. This is different than 4D’s Quick Report Editor
that requires the users to “stack” break levels upon lower (closer to 0) break levels and hide the break levels that are not desired.

With PrintList Pro, a break level can be configured regardless if lower breaks have been configured; therefore, there is no need to
“hide” a break. In the people example, information can be shown for a group of people in the same city without necessarily showing
any information for the state.

In conjunction with PL_SetArraysNam, PrintList Pro uses the information in PL_SetSort to determine where the breaks occur
within the arrays.

If the arrays passed to PrintList Pro are pre-sorted, PL_SetBrkOrder should be used to notify PrintList Pro of the sort order without
forcing an unnecessary sort.

The break level parameter used in many break level routines is the position of a particular column within the sort order given.

For example, if a list of people were to be sorted by state, county, and city respectively, the calls to set and sort the arrays would be:
PL_SetArraysNam (elist;1;4;aPeople;aCity;aCounty;aState)
PL_SetSort (elList;4;3;2)

Break level 1 is state (column 4), break level 2 is county (column 3), and break level 3 is city (column 2).

The following commands are used to configure breaks: PL_ SetBrkColOpt, PL_SetBrkColRGBOpt, PL_ SetBrkColor, PL_
SetBrkRGBColor, PL_SetBrkFunc, PL_SetBrkHeight, PL_SetBrkStyle, PL_SetBrkText.

The following commands are used to configure break headers: PL_SetBkHColOpt, PL_SetBkHColRGBOpt, PL_SetBkHColor,
PL_SetBkHRGBColor, PL_SetBkHFunc, PL_SetBkHHeight, PL_SetBkHStyle, PL_SetBkHText.

PL_SetBrkRowDiv and PL_SetBrkRowRGBDiv are not specifically break footer or header routines.These commands specify the
line that are drawn between a break footer and the following break header or group of rows.

Setting a Break Level

To show information for a break level, you will need to use PL_SetBrkText for break footers and PL_SetBkHText for break headers.

Atext variable containing the information to be printed is passed in for a particular cell within the break. Because a break can consist
of more than one text line, the supplied text may wrap into several lines. See Multiple Lines in a Break and Variable Height Breaks
for more information.

Carriage returns may be embedded into the text to force wrapping.

Using PrintList Pro Break Level Processing-Setting a Break Level

Q.

Break Level Processing

Text Overflow and Justification in Breaks

Unlike a Quick Report, information to be printed in a cell can overflow into adjacent columns depending on the justification.

As specified in the call to PL_SetBrkText or PL_SetBkHText, the area used to print the text is taken from the column specified and
adjacent columns to the right for left justification, columns to the left for right justification, and columns on both sides for center
justification.

Built-in Calculations

Calculations may be embedded into the text passed to PL_SetBrkText or PL_SetBkHText.

Built-in functions — sum, minimum, average, maximum, count, variance, standard deviation and break value — can be inserted
into the text at any desired location. These are identical to 4D’s QuickReport calculations except for break value which inserts the
value from the array that caused the break.

Custom Calculations

You may create custom calculations to be used with or instead of the built-in calculations.

When PrintList Pro sees the custom calculation delimiter, it will execute a callback method, specified using PL_SetBrkFunc for
break footers and PL_SetBkHFunc for break headers, that performs the custom calculation.

The callback method may use most 4D commands, but should not call any PrintList Pro commands or any 4D commands that affect
the arrays.

Also, the callback method should preserve the current selection of the printing layout’s file by saving and restoring the selection if
necessary. The value returned by the callback method will then be printed at the embedded position within the break text.

Suppressing Repeated Values

Repeated values in a sorted list can be suppressed using PL_SetRepeatVal. The repeated value is shown on the first occurrence
and at the top of each page thereafter.

PL_SetRepeatVal works on any sorted list regardless of whether any break level information is shown or not.

Style and Color in Breaks

Style and color settings can be provided for each column within each break level using:

m PL_SetBrkColor for break footers and PL_SetBkHColor for break headers to set foreground and background colors using
PrintList Pro’s palette or 4D’s palette.

m PL_SetBrkRGBColor for break footers and PL_SetBKHRGBColor for break headers to set foreground and background colors
using standard RGB values.

m PL_SetBrkStyle for break footers and PL_SetBkHStyle for break headers to set text style settings

If no style or color information is given, PrintList Pro will use the corresponding column settings from the list.

Text Overflow and Justification in Breaks - Built-in Calculations - Custom Calculations - Suppressing Repeated Values - Style and Color in Breaks

Q.

Break Level Processing

Multiple Lines in a Break

Both break headers and footers can be configured to be a fixed number of lines per break or a variable number of lines.

To set the number of lines to be printed in a break level, use PL_SetBrkHeight for break footers and PL_SetBkHHeight for break
headers. Please read the section Variable Height Breaks for more information.

If no calls to PL_SetBrkText are made for a specific break level, nothing will be displayed for any break occurring for that level
regardless of the number of lines or height pad specified in PL_SetBrkHeight.

Lines Displayed in a Break

PrintList Pro provides complete control over all the lines printed in a break as shown in the following illustration:

Whenever a break or group of breaks is printed, the line following the last break, referred to as the Break/Row Divider, can be
configured using PL_SetBrkRowDiv or PL_SetBrkRowRGBDiv. If the Break/row divider is not set, the row divider (if set) will be
printed by default.

Header Separator

Row
Divider
Frame _} i
h 4
Column ;
Divider
Break/Row Divider Lorizontal Break

If column dividers have been set using PL_SetDividers or, they can be printed in the break using PL_SetBrkColOpt/PL_
SetBrkColRGBOpt for break footers and PL_SetBkHColOpt/PL_SetBKHCoIRGBOpt for break headers.

If set, the column divider will be printed in the break area to the right of each column within the break level.

A horizontal line, referred to in the illustration on the previous page as the Horizontal Break line, may be printed within the break
areas as well.
m for break footers, use PL_SetBrkColOpt/ PL_SetBrkColRGBOpt to print a line at the top of the cell within the break footer area

m for break headers, use PL_SetBkHColOpt/PL_SetBKHCoIRGBOpt to print a line at the bottom of the cell within the break
header area

Multiple Lines in a Break-Lines Displayed in a Break

Q.

Break Level Processing

Hide the Detail Area

The detail area (the list of array data) can be hidden to show only the break level information on the page using PL_SetColOpts.
This is ideal for giving a summary of the array information.

Page Breaks

PL_SetPageBreak tells PrintList Pro whether or not to force a page break on any given break level.

The page break will occur immediately after the break footer is printed for that break level. However, a page break can be set for a
break level regardless of whether a break level is configured to print a break footer.

PL_SetBrkOpts can be called with the parameter printLastPageBreak to print or suppress a a page break if it occurs on the last
page. This option is used to avoid the printing of an unneeded blank page at the end of a PrintList Pro report.

Variable Height Breaks

Any given break level can be set to be a variable height. The same rules apply to breaks as to the rows in that a break can be of no
height or up to the height of an entire page.

When a break level is set to be variable height, PrintList Pro will perform the necessary break level calculation(s) to determine the
height of the text that is to be printed in the break.

To set a break level to be variable height use PL_SetBrkHeight for break footers and PL_SetBkHHeight for break headers.

Using Break Headers

The ability to configure break headers is identical to that of break footers including:

m all calculations: sum, min, average, max, count, variance, standard deviation and break value
m a callback for the break function (one callback for all break headers)

m full style (font, size, style) control for each cell within the break

m horizontal and vertical line/divider control

m foreground and background colors for each cell within the break

m variable height breaks

Break headers can be configured using six commands: PL_SetBkHText, PL_SetBkHFunc, PL_SetBkHStyle, PL_SetBkHColor/
PL SetBkHRGBColor, PL_SetBkHHeight, and PL_SetBkHColOpt/PL SetBKHCoIRGBOpt. These commands are identical in
syntax to the break footer commands.

PL SetBrkColOpt/PL SetBrkColRGBOpt can be called to print horizontal lines at the top of a cell with a break footer. With break
headers, the equivalent commands PL_SetBkHColOpt/ PL_SetBkHColIRGBOpt will print lines at the bottom of a cell within the
break header.

Just as with break footers, break headers will only be printed if the command to set the break text, PL_SetBkHText, has been called
for a particular break level.

Break headers can be configured to be fixed or variable height and have full background color control as is now available with break
footers.

Hide the Detail Area-Page Breaks - Variable Height Breaks - Using Break Headers

Q.

Break Level Processing

Using Computed Breaks

These powerful commands can be used as array utilities without need to print anything and don't even require to set up a plug-in
area.

PL_ProcessArrays is used to specify the name of the computed break callback function. This function will be called for the break
levels and the columns specified by the breakArrays and dataArrays parameters (pointers to arrays).

In addition, the useDetail parameter allows calling the callback only on breaks (value 0), or for each individual row as well (value 1).
PL_ProcessArrays operates on a copy of the arrays, you can freely modify them in the callback.
The callback method is called by PrintList Pro as:

callbackMethodName (handle:L; row:L; breakLevel:L)

PL_GetBreakValue can only be called from the callback method with the specified handle that was received.

This command performs any break level processing calculation (sum, minimum, average, maximum, count, variance, standard
deviation) for the current break level (or individual row) and the specified column (from the list previously defined by the dataArrays
parameter).

See Example 5 — Computed Breaks.

Using Computed Breaks

19

Break Level Processing

Commands

PL_SetPageBreak

(areaRef:L; breakLevel:L; insertPageBreak:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
— breakLevel longint Break level number.

- insertPageBreak longint Insert a page break after the break level.

PL_SetPageBreak is used to set a page break after each break at the specified break level.

A page break can be inserted provided the rows are sorted. However, it is not necessary to configure a break level using PL
SetBrkText or PL_SetBkHText in order to insert a page break.

For the specified break level, the break header, the rows, and the break footer will print (if so configured) prior to the page break.
Any subsequent break footers or rows will be printed at the top of the following page.

breakLevel — The position in the sort order specified in PL_SetSort or PL_SetBrkOrder i.e. 1 through n, where n is the number of
levels of sort.

insertPageBreak — 0 or 1:

Value Mode
0 No page break will be inserted (default)
1 A page break will be inserted after each break at the specified break level

Refer to PL_SetBrkOpts to see how to print or suppress a page break on the last page of a PrintList report.

Example
PL_SetPageBreak(elist;1;1) //force a page break after printing each break of break level 1

Commands

|87

19

Break Level Processing

|88

PL_SetBrkOpts

(areaRef:L;printLastPageBreak:L)

Parameter Type Description
— areaRef longint Reference of PrintList Pro object on layout.
= printLastPageBreak longint Print a page break on the last page.

PL_SetBrkOpts is used to set options pertaining to break levels.

printLastPageBreak — 0 or 1:

Value Mode
0 The page break will be suppressed (default)
1 If there is a page break on the last page, it will be printed

Refer to PL_SetPageBreak for configuring page breaks.

Example
PL_SetBrkOpts(cList;0) //don’t print the last page break

PL_SetBrkOrder

(areaRef:L; colNum1:L; ...; colINumN:L)

Parameter Type Description
— areaRef longint Reference of PrintList Pro object on layout.
= colNumf1; ...; colNumN longint Column(s) that reflects the sort order.

PL_SetBrkOrder is used to communicate the sort order of a previously sorted list to PrintList Pro. The sort information is used by
PrintList Pro to determine where breaks occur within the sorted list.

The syntax of this call is identical to that of PL_SetSort.

colNum — A value greater than 0 indicates that an ascending sort was performed upon that column, while a value less than 0
indicates a descending sort. If a columnNum is 0 then all successive columns will be ignored.

Note: PL_SetBrkOrder does not perform a sort.

Examples
PL_SetBrkOrder(eContacts;3;4;7) //was sorted on columns 3, 4, and 7 (all ascending)
PL_SetBrkOrder (eContacts;-1;3;-2) //was sorted on columns 1 descending, 3 ascending, 2 descending

Commands

19

Break Level Processing

|89

PL_SetRepeatVal

(areaRef:L; columnNum:L; repeatValues:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= columnNum longint Column number.

- repeatValues longint Hide/print repeated values for this column.

PL_SetRepeatVal is used to control the printing of repeated values within a sorted column.
Use PL_SetSort to sort the arrays or if already sorted, use PL_SetBrkOrder to communicate the sorted order to PrintList Pro.

columnNum — The column number to apply this command to. Use a value of zero (0) to apply the repeat settings to all columns
in the list.

repeatValues — 0 or 1:

Value Mode

0 Print all repeated values (default)

1 Only print the first occurence of a repeated value after reaching a break and at the top of each page thereafter
Examples

PL_SetRepeatVal(elist;3;0) //show repeat values for column 3
PL_SetRepeatVal(cList;0;1) //hide repeat values for all columns

PL_SetBrkText

(areaRef:L; breakLevel:L; columnNum:L; breakText:T; numColsToOverflow:L; justification:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Column number.

— breakText longint Text to be printed when a break occurs.

- numColsToOverflow longint Number of adjacent columns to overflow into.
- justification longint Justification of the break text.

PL_SetBrkText is used to specify the text, passed in as breakText, to be printed in the breakLevel and columnNum specified.

Calculations can be performed upon the corresponding values in the list. A calculation is performed by embedding a special
calculation string(s) into breakText as described below.

Text can overflow to adjacent columns using the numColsToOverflow parameter. The text is justified within a column(s) using the
justification parameter.

If no call to PL_SetBrkText is made for breakLevel, no break information will be printed for that break level.

Commands

Q.

Break Level Processing

breakLevel — The position in the sort order specified in PL_SetSort or PL_SetBrkOrder — i.e., 1 through n, where n is the number
of levels of sort. Use a value of 0 to specify the total line to be printed at the end of the list.

columnNum — The column number at which the specified text will be placed for the specified breakLevel.

breakText — The text to be shown in columnNum whenever a break occurs for breakLevel. The text may automatically wrap to
multiple lines or carriage returns can be embedded to force text wrapping. Use PL_SetBrkHeight or PL_SetBkHHeight to set the

number of text lines for a break level if more than 1 line is anticipated.

A calculation may be performed on all the values in columnNum since the last break for breakLevel.

breakText can include embedded calculation strings which inform PrintList Pro to perform the desired calculation using the array
values associated with columnNum. The result of the calculation is formatted into a string which replaces the calculation string at

its location within breakText.

The following table shows a list of the calculations and the associated strings (not case-sensitive) that can be included in breakText:

Calculation Calculation String
Sum "\Sum"
Minimum "\Minimum"
Average "\Average"
Maximum "\Maximum"
Count "\Count"
Variance "\Var"
Standard deviation "\Dev"

Break Value Insertion

"\BreakValue"

Sum, Minimum, Average, Maximum, Count and Standard deviation are identical to that of 4D’s QuickReport editor.

Break Value Insertion will use the array value from the sorted column that is associated with breakLevel for insertion into breakText.

Custom Calculation will execute the callback function specified in PL_SetBrkFunc or PL_SetBkHFunc to retrieve a string for

insertion into breakText.

See PL_SetBrkFunc and PL_SetBkHFunc for details of performing custom calculations using the callback function.

Not all calculations are available on all array types. The following table lists the possible calculations for the various array data types
and the resulting type of the calculation:

Column Data Type Calculation Data Type of Result
numeric Sum same as column
numeric Minimum same as column
numeric Average real
numeric Maximum same as column
all Count longint
numeric Variance same as column
numeric Standard deviation same as column
all Break Value Insertion same as break column
all Custom Calculation formatted text

When the resulting value’s data type is the same as the columnNum data type, the value is formatted using the column’s format.

Commands

Otherwise, the calculations’ results will use PrintList Pro’s real and integer default formats where appropriate.

The result of the custom calculation is formatted by the callback function which returns text.

Q.

Break Level Processing

numColsToOverflow — Number of adjacent columns to use when overflowing to the right (when left justified), or left (when right
justified), or both (when center justified) of columnNum. A value of zero, which is the default, indicates that breakText will only be

printed within the column.

justification — The justification of breakText within the column (or columns if numColsToOverflow is greater than 0):

Value Justification
0 Default (justification of columnNum in the list detail area will be used)
1 Left
2 Center
3 Right
Examples

/[Break level 1, column 3, overflow 2 columns to the right, left-justified
PL_SetBrkText(clList;1;3;"Company Subtotals";2;1)

/[Break level 3, column 6, no column overflow, use default justification

PL_SetBrkText (elList;3;6;"\Sum";0;0)

/[Break level 4, column 3, overflow into 1 column on both sides of this column, center-justified

PL_SetBrkText(elist;4;3;"There are \Count people in this department.”;1;2)

PL_SetBkHText

(areaRef:L; breakLevel:L; columnNum:L; breakText:T; numColsToOverflow:L; justification:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Column number.

— breakText longint Text to be printed when a break occurs.

= numColsToOverflow longint Number of adjacent columns to overflow into.
- justification longint Justification of the break text.

PL_SetBkHText is used to specify the text that is to be printed in the break header. The syntax of this command is identical to that

of PL SetBrkText.

Commands

Q.

Break Level Processing

PL SetBrkFunc

(areaRef:L; functionName:T)

Parameter Type Description
— areaRef longint Reference of PrintList Pro object on layout.
= functionName text Function name to be called back.

PL_SetBrkFunc is used to specify the callback function for use with custom calculations. The callback function functionName is
called whenever PrintList Pro encounters the string "\Function" within the text that is to be printed for a specific break level.

Refer to PL_SetBrkText for details on how to embed the custom calculation string.
PrintList Pro passes information needed for the custom calculation to the callback function.

The callback function should be created using the following interface:
/[Function: MyBreakFunction (breakLevel; column; colFormat; startRow; endRow)
C_LONGINT ($1;$2) //break level, column
C_TEXT ($3) //column format
C_LONGINT($4;$5) //start row, end row
C_TEXT ($0) //custom calculation result to print
/l... perform the custom calculation

$0:=String(customCalc;$3) //format the string using the column format

The callback function is passed the break level number for which the break has occurred, the column number, the format of that
column, and the starting and ending indexes of the corresponding array.

The function should return, as formatted text, the result of the calculation. The return variable, $0, should be of type text and should
be 255 characters or less.

Example

PL_SetBrkFunc(eList;"Break Function") //custom calculation callback

See Example 4 - Break Level Processing for an example of a custom calculation callback function.

PL_SetBkHFunc

(areaRef:L; functionName:T)

Parameter Type Description
— areaRef longint Reference of PrintList Pro object on layout.
= functionName text Function name to be called back.

PL_SetBkHFunc is used to specify the name of the break header callback function. This function will be called for any break header
that contains a break function.

Refer to PL SetBrkText and PL SetBkHText to determine how to set a break function for a break level.

The syntax of this command is identical to that of PL_SetBrkFunc.

Commands

19

Break Level Processing

|93

PL_SetBrkStyle

(areaRef:L; breakLevel:L; columnNum:L; fontName:T; size:L; styleNum:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout
- breakLevel longint Break level number

= columnNum longint Column number

= fontName text Name of the font

= size longint Size of the font

= styleNum longint Style of the font

PL_SetBrkStyle is used to control the appearance of the break level text for the breakLevel and columnNum specified. The

columns can be controlled individually or as a group.

breakLevel — This parameter specifies the break level to apply this command to.

columnNum — The column to apply this command to. Use a value of zero (0) to apply the parameters to all columns within that

break level.

fontName — This specifies the font for the break. The break font may be left unchanged by setting fontName to the empty string

("). If the font specified is not found, it will be treated as an empty string and ignored.

fontSize — This specifies the font size for the break. The break font size may be left unchanged by setting fontSize to 0.

styleNum — This parameter is a font style code. Use the Style constants, which can be combined.

Note: if bold or italic styles are set, but not installed for the font, PrintList Pro will print regular (plain) characters.

PL_SetBkHStyle

(areaRef:L; breakLevel:L; columnNum:L; fontName:T; size:L; styleNum:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Column number.

— fontName text Name of the font.

- size longint Size of the font.

— styleNum longint Style of the font.

PL_SetBkHStyle is used to set the style of the text that is to be printed in the break header.

The syntax of this command is identical to that of PL_SetBrkStyle.

Commands

Q.

Break Level Processing

PL_SetBrkColor

(areaRef:L; breakLevel:L; columnNum:L; plpForeColor:T; 4dForeColor:L; plpBackColor:T; 4dBackColor:L)

Parameter Type Description

- areaRef longint Reference of PrintList Pro object on layout.
- breakLevel longint Break level number.

= columnNum longint Column number.

- plpForeColor text Foreground color from PrintList Pro’s palette.
— 4dForeColor longint Foreground color from 4D’s palette.

= plpBackColor text Background color from PrintList Pro’s palette.
= 4dBackColor longint Background color from 4D’s palette.

PL_SetBrkColor is used to specify the color of the text to be printed in the specified columnNum and breakLevel.
breakLevel — This parameter specifies the break level to apply this command to.

columnNum — The column to apply this command to. Use a value of zero (0) to apply the colors to all columns within that break
level.

plpForeColor — Name of the color in PrintList Pro’s palette. This will be the foreground color for the break. If the name is not in
PrintList Pro’s palette or it is the empty string (""), then 4dForeColor will be used.

4dForeColor — 1 to 256. Foreground color number for the break (from 4D’s palette). If a break foreground color has been
previously set, it may be removed by setting plpForeColor to the empty string ("), and 4dForeColor to 1. The break foreground
color may be left unchanged by setting plpForeColor to the empty string ("), and 4dForeColor to 0.

plpBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the break. If the name is not in
PrintList Pro’s palette or it is the empty string (""), then 4dBackColor will be used.

4dBackColor — 1 to 256. Background color number for the break (from 4D’s palette). If a break background color has been
previously set, it may be removed by setting plpBackColor to the empty string (""), and 4dBackColor to 1. The break background
color may be left unchanged by setting plpBackColor to the empty string ("), and 4dBackColor to 0.

Examples
//Set the foreground color for the break in column 3, break level 1, to red - no background color
PL_SetBrkColor (elList;1;3;"red";0;"";0)
//Set the background color for the break in column 3, break level 1, to blue - no foreground color
PL_SetBrkColor (elList;1;3;";0;"Blue";0)

Commands

19

Break Level Processing

|95

PL_SetBrkRGBColor

(areaRef:L; breakLevel:L; columnNum:L; breakForeRed:L; breakForeGreen:L; breakForeBlue:L; breakBackRed:L;
breakBackGreen:L; breakBackBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Column number.

— breakForeRed longint Foreground red.

— breakForeGreen longint Foreground green.

= breakForeBlue longint Foreground blue.

- breakBackRed longint Background red.

= breakBackGreen longint Background green.

= breakBackBlue longint Background blue.

PL_SetBrkRGBColor is used to specify the color of the text to be printed in the specified columnNum and breakLevel.

This routine works in the same manner as PL_SetBrkColor, except it allows you to specify the colors using standard RGB values.

PL_SetBkHColor

(areaRef:L; breakLevel:L; columnNum:L; plpForeColor:T; 4dForeColor:L; plpBackColor:T; 4dBackColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Column number.

= plpForeColor text Foreground color from PrintList Pro’s palette.
= 4dForeColor longint Foreground color from 4D’s palette.

= plpBackColor text Background color from PrintList Pro’s palette.
= 4dBackColor longint Background color from 4D’s palette.

PL_SetBkHColor is used to specify the color of the text to be printed in the break header for the specified columnNum and
breakLevel.

breakLevel — This parameter specifies the break level to apply this command to.

columnNum — The column to apply this command to. Use a value of zero (0) to apply the colors to all columns within that break
level.

plpForeColor — Name of the color in PrintList Pro’s palette. This will be the foreground color for the break. If the name is not in
PrintList Pro’s palette or it is the empty string ("), then 4dForeColor will be used.

4dForeColor — 1 to 256. Foreground color number for the break header (from 4D’s palette). If a break header foreground color has
been previously set, it may be removed by setting plpForeColor to the empty string (""), and 4dForeColor to 1. The break header
foreground color may be left unchanged by setting plpForeColor to the empty string ("), and 4dForeColor to 0.

Commands

19

Break Level Processing

plpBackColor — Name of the color in PrintList Pro’s palette. This will be the background color for the break header. If the name is
not in PrintList Pro’s palette or it is the empty string ("), then 4dBackColor will be used.

4dBackColor — 1 to 256. Background color number for the break header (from 4D’s palette). If a break header background color
has been previously set, it may be removed by setting plpBackColor to the empty string ("), and 4dBackColor to 1. The break
header background color may be left unchanged by setting plpBackColor to the empty string ("), and 4dBackColor to 0.

Examples

//Set the foreground color for the break header in column 3, break level 1, to red - no background color
PL_SetBkHColor (eList;1;3;"red";0;"";0)

//Set the background color for the break header in column 3, break level 1, to blue - no foreground color
PL_SetBrkColor (eList;1;3;"";0;"Blue";0)

PL_SetBkHRGBColor

(areaRef:L; breakLevel:L; columnNum:L; brkHdrForeRed:L; brkHdrForeGreen:L; brkHdrForeBlue:L; brkHdrBackRed:L;
brkHdrBackGreen:L; brkHdrBackBlue:L)

Parameter Type Description

= areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Column number.

= brkHdrForeRed longint Foreground red.

— brkHdrForeGreen longint Foreground green.

= brkHdrForeBlue longint Foreground blue.

= brkHdrBackRed longint Background red.

= brkHdrBackGreen longint Background green.

= brkHdrBackBlue longint Background blue.

PL_SetBkHRGBColor is used to specify the color of the text to be printed in the break header for the specified columnNum and
breakLevel.

This routine works in the same manner as PL_SetBkHColor, except it allows you to specify the colors using standard RGB values.

Commands

|96

Q.

Break Level Processing

PL_SetBrkHeight

(areaRef:L; breakLevel:L; numBreakLines:L; breakHeightPad:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
- breakLevel longint Break level number.

= numBreakLines longint Number of text lines in the break.

= breakHeightPad longint Extra height for the break.

PL_SetBrkHeight is used to set the number of lines of text along with additional height pad for breakLevel. If no calls to PL
SetBrkText are made for breakLevel, nothing will be displayed for any break occurring for that level regardless of the number of
lines or height pad specified in PL_SetBrkHeight.

numBreakLines — The number of lines to give to each break of the specified break level. A value greater than 0 means that the
height of each break is the same. The fixed height will be a function of the number of text lines specified. A value of zero means that
the height of each break is to be calculated automatically based on the data that is to be printed. Default is 1.

breakHeightPad — The extra height to give to the break level. breakHeightPad sets an additional padding to allow more space
around the break. Text will be centered vertically within the break. Default is 0.

The padding applies to the entire break and not on a line by line basis within the break.

Examples
/[Allocate 5 lines and no pad for break level 3
PL_SetBrkHeight (eList;3;5;0)
/[Break level 2, Pad by 4 pixels, only 1 line
PL_SetBrkColor (elList;2;1;4)

PL_SetBkHHeight

(areaRef:L; breakLevel:L; numBreakLines:L; breakHeightPad:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
— breakLevel longint Break level number.

= numBreakLines longint Number of text lines in the break.

= breakHeightPad longint Extra height for the break.

PL_SetBkHHeight is used to set the number of lines of text along with additional height pad for the specified break header level.
The syntax of this command is identical to that of PL_SetBrkHeight.

numBreakLines — The number of lines to give to each break of the specified break level. A value greater than 0 means that the
height of each break is the same. The fixed height will be a function of the number of text lines specified. A value of zero means that
the height of each break is to be calculated automatically based on the data that is to be printed. Default is 1.

breakHeightPad — The extra height to give to the break level. breakHeightPad sets an additional padding to allow more space
around the break. Text will be centered vertically within the break. Default is 0.

The padding applies to the entire break and not on a line by line basis within the break.

Commands

Q.

Break Level Processing

PL_SetBrkRowDiv

(areaRef:L; lineWidth:F; pattern:T; plpColor:T; 4dColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= lineWidth real Width of the break/row divider line.

= pattern text Pattern of the line.

= plpColor text Color from PrintList Pro’s palette for the line.
= 4dColor longint Color from 4D’s palette for the line.

PL_SetBrkRowDiv is used to set the line width, pattern (transparency ratio) and color of the break/row divider line which is drawn
between any/all break level information and the rows of list data (detail area) that immediately follow.

lineWidth — 0 to 1. This option controls the line width of the break/row divider line. A value of 0.25 pixels should be used for
hairlines. A value of 0 means that no line will be printed.

pattern — Name of the pattern (transparency ratio) for the break/row divider line. If a null string is used then no line will be printed.
See the Patterns item in the Compatibility Notes.

plpColor — Name of the color in PrintList Pro’s palette. This will be the color for the break/row divider line. If the name is not in
PrintList Pro’s palette or it is a null string, then 4dColor will be used.

4dColor — 1 to 256. The color at this position in 4D’s palette will be used for the break/row divider line.

If PL_SetBrkRowDiv is not called, then the settings for the detail area row dividers, if any, will be used.

Examples
/[Print 1 pixel wide, solid Red break/row divider line
PL_SetBrkRowDiv (eList;1;"Black";"Red";0)
/[Print hairline width, solid gray break/row divider line
PL_SetBrkRowDiv (elList;0.25;"Black";"Gray";0)

PL_SetBrkRowRGBDiv

(areaRef:L; lineWidth:F; dividerRed:L; dividerGreen:L; dividerBlue:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= lineWidth real Width of the break/row divider line.

= dividerRed longint Divider line — Red.

= dividerGreen longint Divider line — Green.

= dividerBlue longint Divider line — Blue.

PL_SetBrkRowRGBDiv is used to set the line width and color of the break/row divider line which is drawn between any/all break
level information and the rows of list data (detail area) that immediately follow.

This routine works in the same manner as PL_SetBrkRowDiv, except it allows you to specify the colors using standard RGB values.

Commands

19

Break Level Processing

|99

PL_SetBrkColOpt

(areaRef:L; breakLevel:L; columnNum:L; showColDivider:L; lineWidth:F; pattern:T, plpColor:T, 4dColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

- breakLevel longint Break level number.

= columnNum longint Number of column.

= showColDivider longint Show column divider, if any, in the break .

= lineWidth real Width of the horizontal break line.

= pattern text Pattern of the horizontal break line.

= plpColor text Color from PrintList Pro’s palette for the horizontal break line.
= 4dColor longint Color from 4D'’s palette for the horizontal break line.

PL_SetBrkColOptis used to control the printing of column dividers and horizontal lines within the breakLevel for each columnNum
and to print a horizontal line within a column for this break level.

If showColDivider is 1, a column divider will be printed along the right side of the column specified. The line characteristics are
identical to the column divider shown in the list (detail area).

PL_SetBrkColOpt may be called to show a horizontal line at the top of the break specified in breakLevel in the column specified
by columnNum. This horizontal line could be used as a subtotal line to separate a column of values from a sum or average that is
calculated in the break.

If PL_SetBrkColOpt is not called for any columns in a given break level, then no column dividers or horizontal break lines will be
printed for that break level.

showColDivider — 0 or 1:

Value Mode
0 Don’t show a column divider (default)
1 Show the column divider along the right side of the column specified in the columnNum parameter whenever a break for the

break level specified in breakLevel occurs

lineWidth — 0 to 1. This option controls the line width of the horizontal break line. A value of 0.25 pixels should be used for hairlines.
A value of 0 means that no line will be printed. Double lines (typical in accounting) are supported in breaks: just use 2.0 as the
lineWidth: two 0.25 point lines will be printed.

pattern — Name of the pattern (transparency ratio) for the horizontal break line. If a null string is used then no line will be printed.
See the Patterns item in the Compatibility Notes.

plpColor — Name of the color in PrintList Pro’s palette. This will be the color for the horizontal break line. If the name is not in
PrintList Pro’s palette or it is a null string, then 4dColor will be used.

4dColor — 1 to 256. The color at this position in 4D’s palette will be used for the horizontal break line.

Examples
/[Break level 2, column 3, print column divider and a hairline wide, solid Blue horizontal line in column
PL_SetBrkColOpt (elList;2;3;1;0.25;"Black";"Blue";0)
/[Break level 4, print the column dividers in all columns, no horizontal break lines
PL_SetBrkColOpt (eList;4;0;1;0;"";"";0)

Commands

Q |100

Break Level Processing

PL_SetBrkColRGBOpt

(areaRef:L; breakLevel:L; columnNum:L; showColDivider:L; lineWidth:F; dividerRed:L; dividerGreen:L; dividerBlue:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
- breakLevel longint Break level number.

= columnNum longint Number of column.

= showColDivider longint Show column divider, if any, in the break.
= lineWidth real Width of the horizontal break line.

= dividerRed longint Horizontal break line — Red.

= dividerGreen longint Horizontal break line — Green.

= dividerBlue longint Horizontal break line — Blue.

PL_SetBrkColRGBOpt is used to control the printing of column dividers and horizontal lines within the breakLevel for each
columnNum and to print a horizontal line within a column for this break level.

This routine works in the same manner as PL_SetBrkColOpt, except it allows you to specify the colors using standard RGB values.

PL_SetBkHColOpt

(areaRef:L; breakLevel:L; columnNum:L; showColDivider:L; lineWidth:F; pattern:T, plpColor:T, 4dColor:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.

— breakLevel longint Break level number.

= columnNum longint Number of column.

= showColDivider longint Show column divider, if any, in the break .

= lineWidth real Width of the horizontal break line.

= pattern text Pattern of the horizontal break line.

- plpColor text Color from PrintList Pro’s palette for the horizontal break line.
= 4dColor longint Color from 4D’s palette for the horizontal break line.

PL_SetBkHColOpt is used to control the printing of column dividers and horizontal lines within a break header cell.

This command is identical to PL_SetBrkColOpt, except PL_SetBkHColOpt will print the horizontal lines at the bottom of the cell

instead of at the top.

If showColDivider is 1, a column divider will be printed along the right side of the column specified. The line characteristics are
identical to the column divider shown in the list (detail area).

PL_SetBkHColOpt may be called to show a horizontal line at the bottom of the break specified in breakLevel in the column

specified by columnNum.

If PL_SetBkHColOpt is not called for any columns in a given break level, then no column dividers or horizontal break lines will be

shown for that break level.

Commands

Q |101

Break Level Processing

showColDivider — 0 or 1:

Value Mode
0 Don’t show a column divider (default)
1 Show the column divider along the right side of the column specified in the columnNum parameter whenever a break for the

break level specified in breakLevel occurs

lineWidth — 0 to 1. This option controls the line width of the horizontal break line. A value of 0.25 pixels should be used for hairlines.
A value of 0 means that no line will be printed. Double lines (typical in accounting) are supported in breaks: just use 2.0 as the
lineWidth: two 0.25 point lines will be printed.

pattern — Name of the pattern (transparency ratio) for the horizontal break line. If a null string is used then no line will be printed.
See the Patterns item in the Compatibility Notes.

plpColor — Name of the color in PrintList Pro’s palette. This will be the color for the horizontal break line. If the name is not in
PrintList Pro’s palette or it is a null string, then 4dColor will be used.

4dColor — 1 to 256. The color at this position in 4D’s palette will be used for the horizontal break line.

PL_SetBkHColRGBOpt

(areaRef:L; breakLevel:L; columnNum:L; showColDivider:L; lineWidth:F; dividerRed:L; dividerGreen:L; dividerBlue:L)

Parameter Type Description

— areaRef longint Reference of PrintList Pro object on layout.
= breakLevel longint Break level number.

= columnNum longint Number of column.

= showColDivider longint Show column divider, if any, in the break.
= lineWidth real Width of the horizontal break line.

= dividerRed longint Horizontal break line — Red.

- dividerGreen longint Horizontal break line — Green.

= dividerBlue longint Horizontal break line — Blue.

PL_SetBkHCoIRGBOpt is used to control the printing of column dividers and horizontal lines within a break header cell.

This routine works in the same manner as PL_SetBkHColOpt, except it allows you to specify the colors using standard RGB values.

Commands

19

Break Level Processing

| 102

PL_ProcessArrays
(callbackMethodName:T; breakArrays:Y; dataArrays:Y; useDetail:L) = error:L

Parameter Type Description

= callbackMethodName text Name of the Computed Break callback project method.

= breakArrays array Array of pointers to arrays where breaks must occur (one array for each break level).
— dataArrays array Array of pointers to arrays containing the data to be processed in the callback method.
= useDetail longint 0 = callback method is called only on breaks

1 = callback method is called on breaks and on each row.

PL_ProcessArrays is used to set Computed Breaks. No plugin area is needed, this feature is pure computing on previously sorted
arrays (e.g. with MULTI SORT ARRAY)

callbackMethodName — 4D project method to be called on breaks as defined by breakArrays and also on each row according
to useDetail.

The callback method is called as: callbackMethodName (handle:L; row:L; breakLevel:L)

m handle is to be used as parameter 1 when calling PL_GetBreakValue for the callback

m row is the current row number

m breakLevel is the current break level, -1 for data row (if useDetail = 1)

breakArrays — ARRAY POINTER containing pointers to previously sorted arrays where breaks should occur and
callbackMethodName be called. Local arrays are allowed. First element determines break level 1, second 2, etc.

When breakArrays is empty, the only break generated will be 0.

dataArrays — ARRAY POINTER containing pointers to arrays that will be passed by callbackMethodName to PL_GetBreakValue
in order to retrieve the computed break values. Local arrays are allowed. First element is column 1 for PL_GetBreakValue, second
is 2, etc.

When dataArrays is empty, no calculations are performed.

useDetail — set to 0 for callbackMethodName to be called only with break information, set it to 1 to call the callback method with
every data row and with breaks.

PL_ProcessArrays operates on a copy of the arrays, you can freely modify them in the callback.

Commands

Q |103

Break Level Processing

PL_GetBreakValue

(handle:L; column:L; calculation:L) = value:F

Parameter Type Description

- handle text Identification of the current PL_ProcessArrays call.

- column array Index of the column to be processed in the dataArrays array set by PL_ProcessArrays array.
= calculation array Calculation type.

PL_GetBreakValue is called from the callback method set by PL_ProcessArrays to perform usual break level processing
calculations such as sum, minimum, etc. for the current break level (or individual row) and the specified column.

The calculation result is returned in value by PL_GetBreakValue.

handle is an identification of the current PL_ProcessArrays call. This is actually the process ID. Make sure not to call PL_
ProcessArrays in the callback!

column is the index from the dataArrays pointer array defined by PL_ProcessArrays. When column is out of range, zero is
returned.

calculation can be one of the following values:

Value Calculation
1 Sum

Minimum

Average

Count

Variance

2
3
4 Maximum
5
6
7

Standard deviation

callbackMethodName is the only place where you can call PL_GetBreakValue, using the handle provided as the first parameter
received by the callback method.

Calculations are performed “on the fly” after fetching each data row. So when you call PL_GetBreakValue on a data row (not on a
break), you will get the current values for that row.

For example, using empty breakArrays and useDetail=1, calling PL_GetBreakValue to get the SUM (1), the command will return
the sum of rows 1 through current row.

See also Using Computed Breaks and Example 5 — Computed Breaks.

Commands

@ |104

Examples

Examples

The examples in this section are designed to provide an overview of the use of PrintList Pro and the basic commands.

You may also wish to examine the PrintList Pro demo, for more examples on the various PrintList Pro capabilities.

Example 1 — One record current selection

Print a list of information (First name, Last name, Salary, City, State, Zip, Country) contained in a series of seven arrays. Show
column headers and print dividing lines between the columns. Do not print dividing lines between the rows.

PRINT SELECTION is used to print PrintList Pro plug-in objects. It is important therefore, that you carefully control the current
selection, since a PrintList Pro plug-in object will print once for each record in the current selection.

This example illustrates a situation where the PrintList Pro object is to be printed once, so we can use the PRINT RECORD
command regardless of the current selection.

First we need to create the layout and draw the PrintList Pro plug-in object. We’ll name the object eList.

Our layout now looks something like this:

PrintList Pro - Example 1

BLISTW. 549 h: 55
PrintList™ Pro v5.3

FPage Detail: 104| |Break: 106 a)ate

Footer: 129

The project method which controls the printing is:
ALL RECORDS([Layouts])
OUTPUT FORM([Layouts];"Example 1")
PRINT RECORD([Layouts])

We’'ll use the On Printing Detail event to configure our PrintList Pro area.

Example 1

Q..

Examples

Here is the PrintList Pro area's object method:
If (Form event=0n Printing Detail)
ALL RECORDS([People])
/I Create the arrays from the data

SELECTION TO ARRAY([People]First Name;aFname;[People]Last Name;aLname;[People]Salary;\
aSalary;[People]City;aCity;[People]State;aState;[People]Zip;aZip;[People]Country;aCountry)

$plErr:=PL_SetArraysNam (eList;1;7;"aFname";"aLname";"aSalary";"aCity";"aState";"aZip";\
"aCountry") //set the arrays

If ($plErr=0)
PL_SetHdrOpts(elList;2;0) //print headers on all pages
PL_SetHeaders(elList;1;7;"First Name";"Last Name";"Salary";"City";"State";"Zip";"Country")
/I apply to all headers: Lucida Grande 10 point bold
PL_SetHdrStyle(elList;0;"Lucida Grande";10;1)
PL_SetStyle(elList;0;"Lucida Grande";9;0) //apply to all columns: Lucida Grande 9 point plain
/I print only column dividers: solid gray hairlines
PL_SetDividers (eList;25;"Black";"Gray";0;0;"";"";0)
/I sort column 2 (Last name) in descending order
PL_SetSort (elList;-2)

End if

End if

Example 1

The printed layout will appear as shown below:

PrintList Pro - Example 1

First Name
Todd
Bob
Jeffrey
Del
Curtis
William
Ron
Ron
Amy
Robert
Clair
Joel
Peter
John
George
Steve
Larry
Michael
Jeffrey
Harry
Karen
Michael
Mitch
Sherwin
Martha
Steven
David
Doug
Mike
Pradeep
Rich
Richard
Dan
Jonathan
Patricia
John
Scott
James
Stephen
Jonathan
Steve
Mort
Brad
Hugh
Christopher
Thomas
Jim

Rick
Cheryl
Jackie
Michelle
Pete
Carol
Rachel
Ray
Kazue
Bobby
David

Page 1

Last Name
Zipnick
Yuderman
Young
Yocam
Wright
Woodward
Wong
Wolf
Wohl
Wiggins
Whitmer
Weiss
Watkins
Warnock
Voltz
Vollum
Tesler
Tchong
Tarter
Sweere
Sullivan
Stern
Stein
Steffin
Steffen
Stansel
Smith
Sleeter
Slade
Singh
Shapero
Shaffer
Shafer
Seybold
Seybold
Sculley
Schwarts
Sanford
Saltzman
Rotenberg
Rosenthal
Rosenthal
Romney
Rogovy
Robert
Rielly
Rickard
Richardson
Rhodes
Rae
Preston
Peterson
Person
Parker
Palkovic
Osugi
Orbach
O’Connor

Salary

52,230.08
22,295.00
49,687.96
63,118.86
84,651.42
26,602.10
24,500.00
25,432.96
62,771.94
75,296.34
27,975.08
86,803.50
92,377.74
95,805.78
60,843.30
63,119.84
39,933.04
24,963.54
65,115.12
60,111.24
61,707.66
28,716.94
26,078.78
70,962.78
50,354.36
24,130.54
23,551.36
65,797.20
47,057.64
49,758.52
61,049.10
26,659.92
21,181.72
22,741.88
44,395.96
25,392.78
24,334.38
61,424.44
62,937.56
66,305.82
56,808.64
61,939.92
40,489.68
79,862.16
51,063.88
83,801.76
68,025.72
25,649.54
89,026.14
50,960.00
31,782.38
70,460.04
28,636.58
53,586.40
60,667.88
88,573.38
23,286.76
65,682.54

City
Phoenix
Paris

Los Angeles
San Jose
Rome
Bangkok
San Jose
Minneapolis
London
Jersulaem
Tapei
Redmond
Portland
Milan

San Jose
Munich
Santa Fe
Cupertino
Denver
Boston
Portland
Brooklyn
Portland
Cupertino
Tapei

San Jose
Los Angeles
Santa Fe
Boston
Munich
Tapei
Quincy

Ft. Worth
Dallas
Milan
Redmond
Los Angeles
London

Los Angeles
Denver
Boston
Telluride
Moscow
New York
San Francisco
Denver
Baghdad
New York
Milan
Munich
Phoenix
Santa Fe

Ft. Worth
Dallas

San Antonio
Detroit
Portland
Madison

Zip
60090
94538
94404
95014
95113
94107
95014
95190
19004
94306
94105
94544
95014
94039-7900
02144
97005
95014
94105
02138
55121
10018
19131
94039-7900
91302
95014
01867
92670
95014
98072
98072
94501
10016
94062
90265
02109
95014
85203
95014
97207
02108
94797
02090
84144
98121
02090
94704
94303
10172
94062
94538
10004
84057
94107
94025
06904
94705
10003
02142

Country
USA
France
USA

USA

Italy
Thailand
USA

USA
England
Israel
ROC

USA

USA

Italy

USA
Germany
USA

USA

USA

USA

USA

USA

USA

USA

ROC

USA

USA

USA

USA
Germany
ROC

USA

USA

USA

Italy

USA

USA
England
USA

USA

USA

USA
Soviet Union
USA

USA

USA

Iraq

USA

Italy
Germany
USA

USA

USA

USA

USA

USA

USA

USA

Mon, Jan 21, 2008

Q

Examples

| 106

Example 1

@ |107

Examples

Example 2 — Multiple record current selection

Print a list of company names, showing all the people who work for each company. This example will illustrate the use of PrintList
Pro with multiple records in the current selection.

For purposes of illustration, the company names will be printed directly from the [Companies] table, and the [People] information
will be printed from a series of arrays using PrintList Pro.

Create the layout and draw the PrintList Pro plug-in object. This process is substantially the same as that explained in the first
example, with one exception — we are going to include a field directly on the layout which will print information alongside the
PrintList Pro object.

Our layout is illustrated below:

PrintList Pro - Example 2

Company Employees/Salaries
Header: 50

eList w: 291 h: 55
PrintList™ Pro v5.3
© Plugin Masters - 2013-2015.

Gh...

Footer: 145

The only difference between this example and Example 1 is that we are printing out multiple records.

Since the PrintList Pro commands are executed in the On Printing Detail event of the PRINT SELECTION command we can change
the People arrays “on the fly”.

The [Companies] file is in a One-to-Many relationship with the [People] file, and the links are automatic.
As each [Companies] record is printed a new selection of [People] records is created.
This [People] selection is stored in arrays and printed.

The controlling project method is:
ALL RECORDS([Companies])
OUTPUT FORM([Companies];"Example 2")
PRINT SELECTION([Companies])

The PrintList Pro area's object method is:

If (Form event=0n Printing Detail)

/I Create the arrays - the current selection of [People] changes with each new record
SELECTION TO ARRAY([People]First Name;aFname;[People]Last Name;aLname;[People]Salary; aSalary)
$plErr:=PL_SetArraysNam(eList;1;3;"aFname";"aLname";"aSalary") //set the arrays
If ($plErr=0)
PL_SetHdrOpts(elList;1;0) //print headers at the top of the area only
PL_SetHeaders(elList;1;3;"First Name";"Last Name";"Salary") //set headers

/lapply to all headers: Lucida Grande 10 point bold

Example 2

Q..

Examples

PL_SetHdrStyle(elList;0;"Lucida Grande";10;1)
PL_SetStyle(elList;0;"Lucida Grande";9;0) //apply to all columns: Lucida Grande 9 point plain
/[format column 3, right justified header and column
PL_SetFormat (elList;3;"$##H# ##H# ###.00";3;3)
/I solid black hairline frame/hdr line
PL_SetFrame (elList;0.25;"Black";"Black";0;0.25;"Black";"Black";0)
End if
End if

A portion of our resulting printout appears below:

Example 2

PrintList Pro - Example 2

@ |109

Examples

Company Employees/Salaries
Addison-Wesley Publishing Co., First Name Last Name Salary
Mike Erickson $1,000.00
Steven Stansel $24,130.54
Apple Computer, Inc. First Name Last Name Salary
Barbara Anderson $68,484.36
Samir Arora $63,847.98
Randy Battat $26,898.06
Bill Coldrick $42,369.32
Debi Coleman $71,092.14
Moira Cullen $69,613.32
David Eyes $28,964.88
Jonathan Fader $30,048.76
Jim Floyd $25,055.66
Linda Glish $63,990.08
Russ Havard $20,953.38
Mike Homer $46,056.08
Barbara Krause $41,832.28
Tim Kreps $80,500.14
Jon Magill $59,917.20
John Sculley $25,392.78
Doug Sleeter $65,797.20
Martha Steffen $50,354.36
Larry Tesler $39,933.04
Peter Watkins $92,377.74
Ron Wong $24,500.00
National Apple Professional In First Name Last Name Salary
Mike Bailey $83,410.74
CompuServe First Name Last Name Salary
Sharon Jones $90,019.86
Affinity Microsystems, Ltd. First Name Last Name Salary
Rick Barron $59,908.38
San Jose Mercury News First Name Last Name Salary
Jim Bartimo $21,418.88
Rory O'Connor $63,409.92
Ron Wolf $25,432.96
Think Educational Software, In First Name Last Name Salary
Gregory Berkin $62,239.80
Raw Fish Systems First Name Last Name Salary
Steve Bobker $81,937.80
Bogas Productions First Name Last Name Salary
Ed Bogas $51,108.96
Radius, Inc. First Name Last Name Salary
Page 1 Mon, Feb 11, 2008

Example 3 — Adding a total line to the list

Print the same list of company names and people as Example 2 and add a total line after the end of each list of people. The total
line will contain a sum of the salaries for all the people working for that company.

A total line requires us to use PrintList Pro’s Break Level commands.

While most break levels require the list to be sorted, a total line is the exception. The total line is is configured by passing 0 for the

Example 3

@ |110

Examples

break level parameter.

The object method for the PrintList Pro area in Example 2 has been modified to include the Break Level calls needed as shown
below:

If (Form event=0n Printing Detail)

/[Create the arrays - The current selection of [People] changes with each new record

SELECTION TO ARRAY([People]First Name;aFname;[People]Last Name;aLname;[People]Salary; aSalary)

SplErr:=PL_SetArraysNam(eList;1;3;"aFname";"aLname";"aSalary") //set the arrays

If ($plErr=0)
PL_SetHdrOpts(eList;1;0) //print headers at the top of the area only
PL_SetHeaders(elist;1;3;"First Name";"Last Name";"Salary") //set headers
/I apply to all headers: Lucida Grande 10 point bold
PL_SetHdrStyle(elList;0;"Lucida Grande";10;1)
PL_SetStyle(elList;0;"Lucida Grande";9;0) //apply to all columns: Lucida Grande 9 point plain
/Iformat column 3, right justified header and column
PL_SetFormat(elist;3;"$##H#, #H# ##H.00";3;3) //solid black hairline frame/hdr line
PL_SetFrame (eList;0.25;"Black";"Black";0;0.25;"Black";"Black";0)
PL_SetWidths(elList;1;3;80;80;100) //set the column widths
/I Configure the total line
PL_SetBrkText(elList;0;3;"\Sum";0;0) //calculate the sum in the total line
PL_SetBrkHeight(elist;0;1;4) //add some padding to the total line
PL_SetBrkColOpt(elList;0;3;0;0.25;"Black";"Black";0) //draw a line above the total

End if

End if

Example 3

The total line now appears in the list as is shown below:

PrintList Pro - Example 3

Company Employees/Salaries
Addison-Wesley Publishing Co., First Name Last Name Salary
Mike Erickson $1,000.00
Steven Stansel $24,130.54
$25,130.54
Apple Computer, Inc. First Name Last Name Salary
Barbara Anderson $68,484.36
Samir Arora $63,847.98
Randy Battat $26,898.06
Bill Coldrick $42,369.32
Debi Coleman $71,092.14
Moira Cullen $69,613.32
David Eyes $28,964.88
Jonathan Fader $30,048.76
Jim Floyd $25,055.66
Linda Glish $63,990.08
Russ Havard $20,953.38
Mike Homer $46,056.08
Barbara Krause $41,832.28
Tim Kreps $80,500.14
Jon Magill $59,917.20
John Sculley $25,392.78
Doug Sleeter $65,797.20
Martha Steffen $50,354.36
Larry Tesler $39,933.04
Peter Watkins $92,377.74
Ron Wong $24,500.00
$1,037,978.76
National Apple Professional In First Name Last Name Salary
Mike Bailey $83,410.74
$83,410.74
CompuServe First Name Last Name Salary
Sharon Jones $90,019.86
$90,019.86
Affinity Microsystems, Ltd. First Name Last Name Salary
Rick Barron $59,908.38
$59,908.38
San Jose Mercury News First Name Last Name Salary
Jim Bartimo $21,418.88
Rory O'Connor $63,409.92
Ron Wolf $25,432.96
$110,261.76
Think Educational Software, In First Name Last Name Salary
Gregory Berkin $62,239.80
$62,239.80

Page 1

Mon, Feb 11, 2008

@ |111

Examples

Example 4

@ |112

Examples

Example 4 — Break Level Processing

Print the same list of information shown in Example 1 and add some break level information for all the people in the same city. The
break will show a sum, minimum, average, maximum and standard deviation of the people’s salaries in each city.

Labels for each of the calculations will be printed in the adjacent column to salary. The break will also show the number of people
in the city and the city name.

A custom calculation is included along with the other calculations to calculate an end of year bonus based on 5% of the average
salary.

The list is sorted by country, state, city and last name. This allows the suppression of repeated values for each of these columns. In
order to set break information for the city, we must configure break level 3 because the city array is 3rd in the sort order.

Each of the calculations mentioned will be printed on a separate line, so the height of the break is set to 6 lines. Carriage returns
are inserted between the labels and calculations so that each will start on a new line.

The code for the callback function follows the object method to the PrintList Pro object. In addition, two header lines are shown to
demonstrate the ability for multiple lines in a header.

The object method for the PrintList Pro plug-in area in Example 1 has been modified to include the Break Level calls needed as
shown below:
If (Form event=0n Printing Detail)
/I Create the arrays from the data
ALL RECORDS([People])

SELECTION TO ARRAY([People]First Name;aFname;[People]Last Name;alLname;[People]Salary;\
aSalary;[People]City;aCity;[People]State;;[People]Country;aCountry)

/I Set the arrays

$plErr:=PL_SetArraysNam (eList;1;6;"aFname";"aLname";"aSalary";"aCity";"aState"; "aCountry")

If ($plErr=0)
PL_SetHdrOpts(elList;2;0) //print headers on all pages
PL_SetHeight(elList;2;4;1;0) //2 hdr lines, 4 hdr pad, 1 row line, 2 row pad
PL_SetHeaders(elList;1;6;"First Name";"Last Name";"Salary";"City";"State";"Country")
PL_SetHdrStyle(elist;0;"Lucida Grande";10;1) //all headers: Lucida Grande 10 point bold
PL_SetStyle(eList;0;"Lucida Grande";9;0) //all columns: Lucida Grande 9 point plain
PL_SetFormat(elList;3;"$#H #t# ###.00";3;3) //format column 3, right justified header and column
PL_SetFrame(eList;0.25;"Black";"Black";0;0.25;"Black";"Black";0) //print solid black hairline frame
PL_SetWidths(elList;1;6;76;80;89;79;80;48) //set the column widths
PL_SetBackClr(elList;"Light Gray";0;"White";0)
/I Sort by Country (descending), State, City, and Last Name (descending)
PL_SetSort (elList;-6;5;4;-2)
/I Break level Configuration
PL_SetRepeatVal(eList;0;1) //suppress repeating values in all columns
PL_SetBrkFunc(elist;"Break Function") //set the callback function
PL_SetBrkRowDiv(elList;0.25;"Black";"Black";0) //print a Break/Row divider
/I Configure break level 3, city
PL_SetBrkHeight(eList;3;6;4) //print 6 lines for break level 3

Example 4

@ |113

Examples

/[Print the calculation labels in the column to the left of the salaries
PL_SetBrkText (elList;3;2;"Sum\rAverage\rMinimum\rMaximum\rStandard Dev\rBonus";0;3)
PL_SetBrkStyle(eList;3;2;"Lucida Grande";9;1) //make the labels bold
/[Print the Sum, Minimum, Average, Maximum, Standard Deviation and Bonus for salaries
PL_SetBrkText (eList;3;3;"\Sum\r\\Minimum\r\\Average\r\\Maximum\r\\Dev\r\\Function";0;0)
/I Show the number of people in this city
PL_SetBrkText(elList;3;5;"\r\\Count people in \\BreakValue";1;2)
PL_SetBrkStyle(elist;3;5;"Lucida Grande";10;3) //make the city count info 10 points bold
PL_SetBrkColOpt(el.ist;3;3;0;0.25;"Black";"Black";0) //print a subtotal line in the salary column
End if
End if

The Break Function callback method for the “Bonus” custom calculation is as follows:
C_LONGINT ($1;$2) //break level, column
C_TEXT ($2;$3) //column format
C_LONGINT($4;$5) //start row, end row
C_TEXT($0) //custom calculation result to print
C_LONGINT($i;$count)
C_REAL($result;$average)

/[Calculate the average
For ($i;$4;$5)

Sresult:=$result+aSalary{$i}
End for
$count:=$5-$4+1
$average:=$result/Scount
$result:=Int($average*0,05) //5% rounded
$0:=String($result;$3)

Example 4

Here is a sample of the list containing the breaks:

PrintList™ Pro Demo: Break-Level Processing.

First Name Last Name Salary City State Country
Bill Goodhew $23 275,98 Podunk AR USA
Stan Getz $60 956,00 Podunk AR USA
Yogen Dalal $41 491,24 Podunk AR USA
Bill Coldrick $42 369,32 Podunk AR USA
Sum $168 092,54
Minimum $23 275,98 4 people in Podunk
Average $42 023,13
Maximum $60 956,00
Standard Dev $13 325,83
Bonus $2 101,00
Todd Zipnick $52 230,08 Phoenix AZ USA
Michelle Preston $31 782,38 Phoenix AZ USA
John Markoff $20 416,34 Phoenix AZ USA
Sum $104 428,80
Minimum $20 416,34 3 people in Phoenix
Average $34 809,60
Maximum $52 230,08
Standard Dev $13 163,11
Bonus $1 740,00
Michael Tchong $24 963,54 Cupertino CA USA
Sherwin Steffin $70 962,78 Cupertino CA USA
Jonathan Fader $30 048,76 Cupertino CA USA
Mary Evslin $46 685,24 Cupertino CA USA
Moira Cullen $69 613,32 Cupertino CA USA
Ed Cheffetz $53 588,36 Cupertino CA USA
Sum $295 862,00
Minimum $24 963,54 6 people in Cupertino
Average $49 310,33
Maximum $70 962,78
Standard Dev $17 654,11
Bonus $2 465,00
Jeffrey Young $49 687,96 Los Angeles CA USA
David Smith $23 551,36 Los Angeles CA USA
Scott Schwarts $24 334,38 Los Angeles CA USA
Stephen Saltzman $62 937,56 Los Angeles CA USA
Bill Gates $26 287,52 Los Angeles CA USA
Bruce Davis $57 186,92 Los Angeles CA USA
Raines Cohen $29 784,16 Los Angeles CA USA
Paul Brainerd $59 952,48 Los Angeles CA USA
Lofty Becker $85 627,50 Los Angeles CA USA
Sum $419 349,84
Minimum $23 551,36 9 people in Los Angeles
Average $46 594,42
Maximum $85 627,50
Standard Dev $20 581,37
Bonus $2 329,00
Christopher Robert $51 063,88 San Francisco CA USA
Regis McKenna $57 916,04 San Francisco CA USA
Bob Leff $87 341,52 San Francisco CA USA
Mike Kramer $21 337,54 San Francisco CA USA
Ed Bogas $51 108,96 San Francisco CA USA
Page 1 2 sept. 2013

Q

Examples

Example 5

| 114

@ |115

Examples

Example 5 — Computed Breaks

Computed breaks are a powerful array utility module, which does not require printing.
The demonstration database includes an example under PrintList Pro > Configuration options... Check the “Compute breaks
without print” box:

@ Compute breaks without print...

then click the “Print With PrintList Pro” button:

Print With PrintList Pro...

We will perform a similar action, using the same arrays as in Example 4, then call PL_ProcessArrays and PL_GetBreakValue to
retrieve the results and build a break summary.

We will create a text variable containing all break results without printing anything, then copy it into the pasteboard. We could also
display the text variable like in the demonstration database, or use it otherwise.

C_TEXT(vBrkComputeResult)

ARRAY TEXT(TbreakText_R;0)

C_LONGINT($i)

/I Create the arrays from the data

ALL RECORDS([People])

SELECTION TO ARRAY([People]First Name;aFname;[People]Last Name;aLname;[People]Salary;\
aSalary;[People]City;aCity;[People]State;aState;[People]Country;aCountry)

/I Sort by Country (descending), State, City, and Last Name (descending)

MULTI SORT ARRAY (aCountry;<;aState;>;aCity;>;aLname;<;aFname;aSalary)

/I Declare the "data" array pointing on the actual arrays on which to perform calculations in our callback
/I (we include all arrays in case we'll need them someday, even though we will only use aSalary here)
ARRAY POINTER($dataArrays;0)

APPEND TO ARRAY ($dataArrays;->aCountry)

APPEND TO ARRAY ($dataArrays;->aState)

APPEND TO ARRAY ($dataArrays;->aCity)

APPEND TO ARRAY ($dataArrays;->alL.name)

APPEND TO ARRAY ($dataArrays;->aFname)

APPEND TO ARRAY ($dataArrays;->aSalary)

/I Declare the "break" array pointing on the arrays where to catch breaks in our callback

/laccording to our MULTI SORT ARRAY above (sorted arrays)

ARRAY POINTER($breakArrays;0)

APPEND TO ARRAY ($breakArrays;->aCountry)

APPEND TO ARRAY ($breakArrays;->aState)

APPEND TO ARRAY ($breakArrays;->aCity)

Example 5

APPEND TO ARRAY($breakArrays;->aL.name)
/INow we process the arrays using the "PlpComputeBreak” project method for computing
If (PL_ProcessArrays ("PlpComputeBreak";$breakArrays;$dataArrays;0)=0)
/[4th parameter is O for each break or 1 for each row
/INow TbreakText_R has been populated by PlpComputeBreak: concatenate breaks into a text variable
vBrkComputeResult:=""
For ($i;1;Size of array(TbreakText_R))
vBrkComputeResult:=vBrkComputeResult+TbreakText_R{$i}+Char(Carriage return)
End for
SET TEXT TO PASTEBOARD(vBrkComputeResult) //or do something else with vBrkComputeResult
End if

Here is our PIpComputeBreak callback method.
C_LONGINT($1;$2;$3) //handle, row, break level ($breakArrays)
C_LONGINT($dataArray) //position of the array to feed computed break in $dataArrays
//from the calling method (third parameter to PL_ProcessArrays)
C_TEXT($format;$breakText)
If ($3>=0) //is it a break
$dataArray:=6 //aSalary
Sformat:="S### HiH# ###.00"
Case of
: ($3=1) //break on aCountry
: ($3=2) //break on aState
: ($3=3) //break on aCity
/I $breakText:="Hello, | am the break at level "+String($3)+" after row "+String($2) \
/[+(Char(Carriage return)*2) //we could do this to use $2

/I Concatenate the text for the current break

$breakText:=""

$breakText:=$breakText+"There are "+String(PL_GetBreakValue ($1;$dataArray;5)) +" people in"\
+aCity{$2-1}+(Char(Carriage return)*2)

$breakText:=$breakText+"Sum: "+String(PL_GetBreakValue ($1;$dataArray;1);$format)\

+Char(Carriage return)
$breakText:=$breakText+"Minimum: "+String(PL_GetBreakValue ($1;$dataArray;2);$format)\

+Char(Carriage return)
$breakText:=$breakText+"Average: "+String(PL_GetBreakValue ($1;$dataArray;3);$format)\

+Char(Carriage return)
$breakText:=$breakText+"Maximum: "+String(PL_GetBreakValue ($1;$dataArray;4); $format)\

+Char(Carriage return)
$breakText:=$breakText+"Standard Dev: "+String(PL_GetBreakValue ($1;$dataArray;7);$format)\

+Char(Carriage return)

Q

Examples

Example 5

| 116

@ ..

Examples

/I We perform the 5% calculation right here:
$breakText:=$breakText+"Bonus:"+String(Round(PL_GetBreakValue ($1;$dataArray;3)*0,05;0);\
$format)+Char(Carriage return)
$breakText:=$break Text+"--------------- "+Char(Carriage return)
APPEND TO ARRAY(TbreakText_R;$breakText)
: ($3=4) //break on last name
End case
Else //this is a row because $3 <0
/ldo something
End if

Example 5

@ |118

Examples

Here is the resulting text:

There are 4 people in Podunk

Sum: $168 092,54
Minimum: $23 275,98
Average: $42 023,13
Maximum: $60 956,00
Standard Dev: $13 325,83

Bonus: $2 101,00

There are 3 people in Phoenix

Sum: $104 428,80
Minimum: $20 416,34
Average: $34 809,60
Maximum: $52 230,08
Standard Dev: $13 163,11
Bonus: $1 740,00

There are 6 people in Cupertino

Sum: $295 862,00
Minimum: $24 963,54
Average: $49 310,33
Maximum: $70 962,78
Standard Dev: $17 654,11

Bonus: $2 466,00

Example 5

PrintList Pro Constants

@

PrintList Pro Constants

| 119

PLP Colors PLP Justification

PL White White PL Just Default 0

PL Black Black PL Just Left 1

PL Magenta Magenta PL Just Center 2

PL Red Red PL Just Right 3

PL Cyan Cyan PLP Font Style

PL Green Green PL Plain 0

PL Blue Blue PL Bold 1

PL Yellow Yellow PL ltalic 2

PL Gray Gray PL Underline 4

PL Light gray Light gray PL Outline 8

PL Use 4D palette color PL Shadow 16

PLP Patterns PL Condensed 32

PL White Pattern White PL Extended 64

PL Black pattern Black PLP Break Levels

PL Gray pattern Gray PL Break Level 1 1

PL Light gray pattern Light gray PL Break Level 2 2

PL Dark gray pattern Dark gray PL Break Level 3 3

PLP Command Results PL Break Level 4 4

PL Registration Failed 1 PL Break Level 5 5

PL Registration Passed 0 PL Break Level 6 6

PL SetArrays Passed 0 PL Break Level 7 7

PL Not an array 1 PL Break Level 8 8

PL Wrong type of array 2 PL Break Level 9 9

PL Wrong number of rows 3 PL Sum \Sum

PL Maximum number of arrays exc 4 PL Average \Average
PL Not enough memory 5 PL Minimum \Minimum
PL SetFile Passed 0 PL Maximum \Maximum
PL Not a file 6 PL Count \Count
PL Wrong 4D version 10 PL Variance \Var

PL Arrays have been set 11 PL Deviation \Dev

PL Fields have been set 12 PL Break Value Insertion \BreakValue
PL SetFields Passed 0 PL Custom Calculation \Function
PL Not a field 7

PL Wrong field type 8

@

PrintList Pro Constants

| 120

PL Maximum fields exceeded 9

PL Save Data Passed 0

PL Save Data Failed 1

PL Restore Data Passed 0

PL Restore Data Failed 1

PLP Break Values PLP Options

PL Break Value Sum 1 PL No Headers 0

PL Break Value Minimum 2 PL First Page Headers 1

PL Break Value Average 3 PL Print All Headers 2

PL Break Value Maximum 4 PL Suppress Pixel Width 0

PL Break Value Count 5 PL Print Pixel Width 1

PL Break Value Variance 6 PL Print Array 0

PL Break Value Deviation 7 PL Hide Array 1
PL Print All Records -1
PL Print Page Breaks 1
PL Suppress Page Breaks 0
PL Print Last Page Break 1
PL Suppress Last Page Break 0
PL Print Repeated Values 0
PL Suppress Repeated Values 1
PL Print Column Divider 0
PL Suppress Column Divider 1
PL Suppress Detail Area 1

@

Text Style Tags

Text Style Tags

| 121

If the attributed option has been setin PL_SetFormat, special tags can be used in any text contained in a PrintList Pro area to print

multi-styled characters.

These tags work just like HTML tags: <tag>styled text</tag>.

Style Tag
Bold
Italic <i>
Underline <u> or <ins>
Strike-through
Set font size to # points <s #>
Increase font size by # quarters (1/4) of current size <s +#>
Decrease font size by # quarters (1/4) of current size <s -#>
Set font by name <f "font name">

(needs to be quoted if the name contains more than one word)

Set color (any format can be used, e.g. <c 0XFFFF0000> <c <c color name>
1.0,0,0> <c P123> <c dark orange>)

4D internal format for styled text is stored as where the style attributes used by PrintList Pro are:

m font-family

m font-size

m font-weight (bold/normal)

m font-style (italic/normal)

m text-decoration (underline/line-through/none)
m color (#RRGGBB)

m background-color (#RRGGBB)

It is also possible to set the format as attributed, and specify the style attributes using the PL_SetFormat command.

Example for an longint column:
C_TEXT($format)
$format:="<c blue>+#####</c>;<i><c red>-##HH</c></i>;<s+1><c green>ZERO</c></s>"
PL_SetFormat ($area;1;$column;0;0;1;1;1;0)
/I Right-aligned (it is a number; default of zero will use 2), auto-sized height (because ZERO is bigger),

Il attributed, with "compatible" line spacing and default vertical alignment

Text Style Tags

@ ..

Text Style Tags

With the above settings:

m Positive numbers will be printed in blue roman characters with a plus sign.

m Negative numbers will be printed in red italic characters with a minus sign.

m Zeros will be printed in green bold, font size increased by 25%, with the text "ZERO".

m Here is the result:

-16 238
-5 526
-31 880
-21 940
+4 137
-100

+27 512
-9 330
+21 250
+707
+28 936
-30 953
-24 692
+24 109
-24 352

Note: if the number format is too “small” to hold the number, 4D (and PrintList Pro) will display it as “<<<<<<<<<<<<<<<<<<,
which will interfere with the opening tag character “<” if the column is attributed (multi-styled).

In the example above (using "## ###" as a number format), this will be the case for all numbers exceeding 99,999.
Make sure that the format used will not cause the number to overflow, lest unexpected results might ensue.

Text Style Tags

[13]

Copyrights and Trademarks

Copyrights and Trademarks

All trade names referenced in this document are the trademark or registered trademark of their respective holders.
PrintList Pro is copyright Plugin Masters SAS and exclusively published worldwide by e-Node.
4% Dimension, 4D and 4D Server are trademarks of 4D SAS.

Windows, Excel and Vista are trademarks of Microsoft Corporation.

Macintosh, MacOS and MacOS X are trademarks of Apple. Inc.

PrintList Pro manual originally written by Pat Bensky.

| 123

Copyrights

http://www.e-node.com
http://www.4d.com
http://www.microsoft.com
http://www.apple.com
https://twitter.com

AD SerVer . . ot 13
B4-bit. 7
%PrintListPro 34

A

AreaListPro 23
Arraymode. 77
Attributed 23,121
AVerage 90

Border. 65
Borders. 31
Break 70, 80
Break header 91, 92
Break Header 70
Breaklevel 58
Break Level.......... 111, 112
Break Level Processing 80

C

Calculated column 71,79
Calculated columns. 75,76
Calculatedvalues 72
Calculations 83
Callback 31, 67, 69, 92, 102, 112
Callback method 79, 103, 116
Callback Method 77
Color................... 44, 61, 83, 94, 95, 98, 99, 101

Q

Index
Colors 28, 46, 48, 51
Columndividers 100
Commands 20
Commandsyntax 20
Compatibilityo 7
Compiler_PLP. 21
Component. 22,35
Computed Break. i 102
ComputedBreaks. 22,72, 86, 115
Constants 24,119
Count .. 90
Custom Calculations. 70, 83
D
Demomode 8
Demonstrationmode. 12
Divider 54, 98
Dividers. 53, 99
Dividing Lines 30
Doublelines 23
E
Ellipsis ... o 43
EMail notification. 18
EndofPage 69
F
Fieldmode 76
Field Printing. 73

| 124

Index

Fields 75
Finalkeys 16
Font 43, 50, 59, 93
Format 37
Formatting. 25
Forums e 7
Frame...... 30, 55, 56, 66
Frames 31

Header 36, 57
Headers 25, 39, 41
Headerseparator 55, 56
Height. 97
Hide ... 85
Hidecolumns 58
Horizontallines. 99, 100

lcon. ... 31
lcons. .. 63
Installation. 8
Instant activation. oL 16

J

Justification. 37

L

License server 16
Licensetypes 9,10
Linewidth 99, 101

Index
M
Machine ID 14
Masterkey 16
Maximum 90
Merged 14
Mergedlicenses 9
Minimum 90
MultipleLines 29, 84
Multiplerecord 107
Multi-style 23
Multi-styled 121
[
Numberformat 122
Numberoflines. 57, 97
0
OEM . . 10
Omitted parameters 20
Onerecordt 104
Online instant activation 11, 13, 15, 16, 34
P
Padding. 57,97
Pagebreak..... 87
PageBreaks. 85
Palette 28
Parameters. e 20
Partner 10
Pattern 55, 98, 99, 101
Patterns 21
Picture Arrays 30
Picture Library. 21
PL_AddColumn. 22,35
PL _GetBreakValue 103
PL GetVersion 67
PL_Load 68
PL_Register 15, 32

| 125

Index

PL_Save. 68
PL_SetArraysNam 35
PL SetBackClr......... i 46
PL SetBackRGBColor 47
PL_SetBKkHCoIOpt 100
PL_SetBkHColor. 95
PL_SetBKHCOIRGBOpt.o 101
PL_SetBKHFunc.......... 92
PL_SetBkHHeight. 97
PL_SetBKkHRGBColor. 96
PL_SetBkHStyle 93
PL_SetBkHText. 91
PL SetBrkColOpt 99
PL SetBrkColor 94
PL_SetBrkColRGBOpPto 100
PL_SetBrkFunc. 92
PL_SetBrkHeight, 97
PL_SetBrkOpts.o 88
PL_SetBrkOrder 88
PL_SetBrkRGBColor. 95
PL_SetBrkRowDiv 98
PL_SetBrkRowRGBDiv. 98
PL_SetBrkStyle. 93
PL SetCalcCall. 79
PL SetCellBorder. 65
PL_SetCellColor. 61
PL_SetCellFrame i 66
PL_SetCelllcon. 63
PL_SetCellRGBColor 62
PL_SetCellStyle 59
PL_SetColBackColor 48
PL_SetColOpts.o 58
PL_SetDividers. 53
PL_SetFields 75
PL_SetFile 74
PL SetForeClr 44
PL_SetForeRGBColor. 45
PL_SetFormat. 37
PL_SetFrame 55
PL_SetHdrOpts. 42

Index
PL_SetHdrStyle 41
PL SetHeaders. 36
PL_SetHeight 57
PL _SetMiscOptions 43
PL_SetPageBreak 87
PL_SetPageProc i, 67
PL_SetRepeatVal 89
PL_SetRGBDividers 54
PL_SetRGBFrameiiiiueo... 56
PL_SetRowColor 51
PL_SetRowRGBColor. 52
PL_SetRowStyle. 50
PL SetSort....... 58
PL_SetStyle 43
PL_SetWidths. 41
Plugin Area 19
PrintingRecords 25
PrintList ProArea 19
Printrecords 74
R
Register 12, 32
Registering 1
Registering Serverlicenses 13
Regularlicenses. i 9
Remotemode. 13
Repeatedvalues. 89
Repeated Values. 83

RGB 22, 28, 45, 47, 49, 52, 54, 56, 62, 65, 66, 95, 96, 98, 100,
101

S

SeparatorLines 30
Single-userlicense 10
SOrt. L 58, 88
Sorting ... 73
Sorting Arrays 25
Standard deviation 23, 90
Style 43, 50, 59, 60, 83, 93

| 126

Index

Styledtext. 21, 26
Styles . .. 26
StyleTagso 121
SUM 90
TextOverflow 83
TimMe . . 73
Totalline 109
Two-dimensionalarray 24
Updates 9
Upgrading. 21
Variable Height 29, 85
Variance 23,90
Version 67
Width 41
Widths. 30
Wrap . .o 57
XML . 23, 68

‘E!:, | 127

Index

Index

	About PrintList Pro
	What is PrintList Pro, and what can I do with it?
	Technical Details
	Compatibility Information
	Technical Support

	Installing the plugin
	Using PrintList Pro in Demo mode
	Licensing
	Definitions
	Free updates
	License types

	Registering your PrintList Pro License
	Quick and easy way – End-user online instant activation
	Quick and easy way – Developer online instant activation
	The Demonstration mode dialog
	Registering Server licenses
	Using a text file
	Combining methods
	Online instant activation

	Getting started with
PrintList Pro
	Creating your first PrintList Pro Area
	Working with PrintList Pro Commands
	Command parameters
	When to use the PrintList Pro Commands

	Upgrading from Previous Versions of PrintList Pro
	Two major differences with previous versions
	Compatibility Notes
	New Configuration commands
	New RGB commands
	New Break Processing commands: Computed Breaks
	Additions to existing commands
	New break features
	Printing an AreaList Pro area

	Configuring PrintList Pro
	Using Defined Constants with PrintList Pro
	Specifying the Arrays to Print
	Printing Records
	Headers
	Sorting Arrays
	Formatting
	Styles
	Constants
	Column and Header Styles
	Row-Specific Styles
	Cell-Specific Styles
	Styled text

	Colors
	Defining colors
	Column and Header Colors
	Cell-Specific Colors

	Multiple Lines in each Row
	Variable Height Rows
	Column Widths
	Dividing Lines, Frame and Header Separator Lines
	Hairline Line Width
	Double lines

	Using Picture Arrays
	End of Page Callback Method
	Performance Issues with Formatting Commands
	Borders and Frames
	Header / Cell Icon Support
	Picture Objects in Cells
	Picture Objects in Headers

	Configuration Commands
	n PL_Register
	n %PrintListPro
	n PL_AddColumn
	n PL_SetArraysNam
	n PL_SetHeaders
	n PL_SetFormat
	n PL_SetWidths
	n PL_SetHdrStyle
	n PL_SetHdrOpts
	n PL_SetMiscOptions
	n PL_SetStyle
	n PL_SetForeClr
	n PL_SetForeRGBColor
	n PL_SetBackClr
	n PL_SetBackRGBColor
	n PL_SetColBackColor
	n PL_SetColBackRGBColor
	n PL_SetRowStyle
	n PL_SetRowColor
	n PL_SetRowRGBColor
	n PL_SetDividers
	n PL_SetRGBDividers
	n PL_SetFrame
	n PL_SetRGBFrame
	n PL_SetHeight
	n PL_SetSort
	n PL_SetColOpts
	n PL_SetCellStyle
	n PL_SetCellColor
	n PL_SetCellRGBColor
	n PL_SetCellIcon
	n PL_SetCellBorder
	n PL_SetCellFrame
	n PL_SetPageProc
	n PL_GetVersion
	n PL_Load
	n PL_Save

	Using the Callback Methods
	Summary
	Warnings
	End of Page Callback
	Custom Calculations in a Break
	Custom Calculations in a Break Header
	Calculated Column Callback
	Computed Breaks

	Field and Record Commands
	Using the Field Printing Capability
	Temporary Arrays
	Arrays and Fields

	Printing 4D Fields
	Fields from Related One Tables
	Sorting
	Time Data
	Maximum Number of Records Printed
	Performance Issues When Printing Fields

	Commands
	n PL_SetFile
	n PL_SetFields

	Calculated Columns
	Setting a Calculated Column (field mode)
	Setting a Calculated Column (array mode)
	Setting the Callback Method
	Field mode example
	Array mode example

	Commands
	n PL_SetCalcCall

	Break Level Processing
	About PrintList Pro Break Level Processing
	When Do Breaks Occur?
	Using PrintList Pro Break Level Processing
	Setting a Break Level
	Text Overflow and Justification in Breaks
	Built-in Calculations
	Custom Calculations
	Suppressing Repeated Values
	Style and Color in Breaks
	Multiple Lines in a Break
	Lines Displayed in a Break
	Hide the Detail Area
	Page Breaks
	Variable Height Breaks
	Using Break Headers
	Using Computed Breaks
	Commands
	n PL_SetPageBreak
	n PL_SetBrkOpts
	n PL_SetBrkOrder
	n PL_SetRepeatVal
	n PL_SetBrkText
	n PL_SetBkHText
	n PL_SetBrkFunc
	n PL_SetBkHFunc
	n PL_SetBrkStyle
	n PL_SetBkHStyle
	n PL_SetBrkColor
	n PL_SetBrkRGBColor
	n PL_SetBkHColor
	n PL_SetBkHRGBColor
	n PL_SetBrkHeight
	n PL_SetBkHHeight
	n PL_SetBrkRowDiv
	n PL_SetBrkRowRGBDiv
	n PL_SetBrkColOpt
	n PL_SetBrkColRGBOpt
	n PL_SetBkHColOpt
	n PL_SetBkHColRGBOpt
	n PL_ProcessArrays
	n PL_GetBreakValue

	Examples
	Example 1 — One record current selection
	Example 2 — Multiple record current selection
	Example 3 — Adding a total line to the list
	Example 4 — Break Level Processing
	Example 5 — Computed Breaks

	PrintList Pro Constants
	Text Style Tags
	Copyrights and Trademarks
	Index

